286 research outputs found

    Computational Design of Self-actuated Deformable Solids via Shape Memory Material.

    Get PDF
    The emerging 4D printing techniques open new horizons for fabricating self-actuated deformable objects by combing strength of 3D printing and stimuli-responsive shape memory materials. This work focuses on designing self-actuated deformable solids for 4D printing such that a solid can be programmed into a temporary shape and later recovers to its original shape after heating. To avoid a high material cost, we choose a dual-material strategy that mixes an expensive thermo-responsive shape memory polymer (SMP) material with a common elastic material, % for fabricating objects, which however leads to undesired deformation at the shape programming stage. We model this shape programming process as two elastic models with different parameters linked by a median shape based on customizing a constitutive model of thermo-responsive SMPs. Taking this material modeling as a foundation, we formulate our design problem as a nonconvex optimization to find the distribution of SMP materials over the whole object as well as the median shape, and develop an efficient and parallelizable method to solve it. We show that our proposed approach is able to design self-actuated deformable objects that cannot be achieved by state of the art approaches, and demonstrate their usefulness with three example applications

    Rapport final du projet européen CatClay sur les processus de migration des cations dans les roches argileuses indurées

    Get PDF
    International audienceIn the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it isnow well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick’s law, are mainlygoverned by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactiveanionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupledsorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes withsites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClayproject is to address this issue, using a ‘bottom-up’ approach, in which simpler, analogous systems (here a compacted clay,‘pure’ illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e.the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, isverified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbingcation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort wasdevoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data neededto test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbingcations of interest was confirmed both in the simpler analogous illite system for Sr2+, Co(II) and Zn(II), but also in the naturalclay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisinglysucceeded in reproducing the experimental data under the various conditions both in illite and clay rocks, even though someassumptions made have to be verified. In parallel, actual 3D geometrical pore size distributions of compacted illite, and in lessextent, clay rock samples, were successfully determined by combining TEM and FIB-nt analyses on materials maintained in awater-like saturation state by means of an extensive impregnation step. Based on this spatial distribution of pores, first numericaldiffusion experiments were carried at the pore scale through virtual illite, enabling a better understanding of how transferpathways are organized in the porous media. Finally, the EC CatClay project allowed a better understanding of the migration ofstrongly sorbing tracers through low permeability ‘clay rock’ formations, increasing confidence in our capacity to demonstratethat the models used to predict radionuclide migration through these rocks are scientifically sound

    Utility of Hemoglobin A1c for Diagnosing Prediabetes and Diabetes in Obese Children and Adolescents

    Get PDF
    OBJECTIVE-Hemoglobin A(1c) (A1C) has emerged as a recommended diagnostic tool for identifying diabetes and subjects at risk for the disease. This recommendation is based on data in adults showing the relationship between A1C with future development of diabetes and microvascular complications. However, studies in the pediatric population are lacking. RESEARCH DESIGN AND METHODS-We studied a multiethnic cohort of 1,156 obese children and adolescents without a diagnosis of diabetes (male, 40%/female, 60%). All subjects underwent an oral glucose tolerance test (OGTT) and A1C measurement. These tests were repeated after a follow-up time of similar to 2 years in 218 subjects. RESULTS-At baseline, subjects were stratified according to A1C categories: 77% with normal glucose tolerance (A1C 6.5%). In the at risk for diabetes category, 47% were classified with prediabetes or diabetes, and in the diabetes category, 62% were classified with type 2 diabetes by the OGTT. The area under the curve receiver operating characteristic for A1C was 0.81 (95% Cl 0.70-0.92). The threshold for identifying type 2 diabetes was 5.8%, with 78% specificity and 68% sensitivity. In the subgroup with repeated measures, a multivariate analysis showed that the strongest predictors of 2-h glucose at follow-up were baseline A1C and 2-h glucose, independently of age, ethnicity, sex, fasting glucose, and follow-up time. CONCLUSIONS-The American Diabetes Association suggested that an A1C of 6.5% underestimates the prevalence of prediabetes and diabetes in obese children and adolescents. Given the low sensitivity and specificity, the use of A1C by itself represents a poor diagnostic tool for prediabetes and type 2 diabetes in obese children and adolescents

    Silicone adhesive multilayer foam dressings as adjuvant prophylactic therapy to prevent hospital-acquired pressure ulcers : a pragmatic noncommercial multicentre randomized open-label parallel-group medical device trial

    Get PDF
    Background: Silicone adhesive multilayer foam dressings are used as adjuvant therapy to prevent hospital‐acquired pressure ulcers (PUs). Objectives: Determine if silicone foam dressings in addition to standard prevention reduce PU incidence category 2 or worse compared to standard prevention alone. Methods: Multicentre, randomised controlled, medical device trial conducted in eight Belgian hospitals. At risk adult patients were centrally randomised (n=1633) to study groups based on a 1:1:1 allocation: experimental group 1 (n=542) and 2 (n=545) ‐ pooled as the treatment group ‐ and the control group (n=546). Experimental groups received PU prevention according to hospital protocol, and a silicone foam dressing on these body sites. The control group received standard of care. The primary endpoint was the incidence of a new PU category 2 or worse at these body sites. Results: In the intention‐to‐treat population (n=1605); 4.0% of patients developed PUs category 2 or worse in the treatment group and 6.3% in the control group (RR=0.64, 95% CI 0.41 to 0.99, P=0.04). Sacral PUs were observed in 2.8% and 4.8% of the patients in the treatment group and the control group, respectively (RR=0.59, 95% CI 0.35 to 0.98, P=0.04). Heel PUs occurred in 1.4% and 1.9% of patients in the treatment and control group respectively (RR=0.76, 95% CI 0.34 to 1.68, P=0.49). Conclusions: Silicone foam dressings reduce the incidence of PUs category 2 or worse in hospitalised at‐risk patients when used in addition to standard of care. Results show a decrease for sacrum, but no statistical difference for heel/trochanter areas

    Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2 experiments

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1594-1604, doi:10.1016/j.dsr2.2008.04.013.This paper presents results on tracer experiments using 13C and 15N to estimate uptake rates of dissolved inorganic carbon (DIC) and nitrogen (DIN). Experiments were carried out at station K2 (47°N, 161°E) in the NW Pacific subarctic gyre during July-August 2005. Our goal was to investigate relationships between new and export production. New production was inferred from the tracer experiments using the f ratio concept (0-50m); while export production was assessed with neutrally buoyant sediment traps (NBSTs) and the e ratio concept (at 150m). During trap deployments, K2 was characterized both by changes in primary production (523 to 404 mg C m-2 d-1), new production (119 to 67 mg C m-2 d-1), export production (68 to 24 mg C m-2 d-1) and phytoplankton composition (high to low proportion of diatoms). The data indicate that 17 to 23% of primary production is exportable to deeper layers (f ratio) but only 6 to 13% collected as a sinking particle flux at 150m (e ratio). Accordingly, > 80% of the carbon fixed by phytoplankton would be mineralized in the upper 50m (1 – f), while < 11% would be within 50-150m (f – e). DIN uptake flux amounted to 0.5 mM m-2 h-1, which was equivalent to about 95% particulate nitrogen (PN) remineralized and/or grazed within the upper 150 m. Most of the shallow PN remineralization occurred just above the depth of the deep chlorophyll maximum (DCM), where a net ammonium production was measured. Below the DCM, while nitrate uptake rates became negligible because of light limitation, ammonium uptake did continue to be significant. The uptake of ammonium by heterotrophic bacteria was estimated to be 14-17% of the DIN assimilation. Less clear are the consequences of this uptake on the phytoplankton community and biogeochemical processes, e.g. new production. It was suggested that competition for ammonium could select for small cells and may force large diatoms to use nitrate. This implies that under Fe stress as observed here, ammonium uptake is preferred and new production progressively suppressed despite the surplus of nitrate.This research was supported by the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as the US National Science Foundation programs in Chemical and Biological Oceanography

    Hepatic Fat Accumulation Is Modulated by the Interaction between the rs738409 Variant in the PNPLA3 Gene and the Dietary Omega6/Omega3 PUFA Intake

    Get PDF
    A single nucleotide polymorphism (SNP), the rs738409, in the patatin like phospholipase 3 gene (PNPLA3) has been recently associated with increased hepatic steatosis and ALT levels in adults and children. Given the potential role of PNPLA3 in fatty liver development, we aimed to explore whether the influence of PNPLA3 genotype on hepatic fat in obese youth might be modulated by dietary factors such as essential omega polyunsaturated fatty acids (PUFA) intake.We studied 127 children and adolescents (56 boys, 71 girls; 58 Caucasians; 30 African Americans and 39 Hispanics; mean age 14.7±3.3; mean BMI 30.7±7.2). The dietary composition was assessed by the Nutrition Data System for Research (NDS-R version 2011). The patients underwent a MRI study to assess the liver fat content (HFF%), ALT measurement and the genotyping of the rs738409 SNP by automatic sequencing.As previously observed, HFF% and ALT levels varied according to the genotype in each ethnicity. ALT levels and HFF% were significantly influenced by the interaction between genotype and omega-6/omega-3 PUFA ratio (n-6/n-3), p = 0.003 and p = 0.002, respectively. HFF% and ALT levels were, in fact, related to the n-6/n-3 consumption only in subjects homozygote for the G allele of the rs738409 (r2 = 0.45, p =  0.001 and r2 = 0.40, p = 0.006, respectively).These findings suggest that the association of a high dietary n-6/n-3 PUFA with fatty liver and liver damage in obese youths may be driven by a predisposing genotype

    Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin.

    Get PDF
    The in situ hybridization Allen Mouse Brain Atlas was mined for proteases expressed in the somatosensory cerebral cortex. Among the 480 genes coding for protease/peptidases, only four were found enriched in cortical interneurons: Reln coding for reelin; Adamts8 and Adamts15 belonging to the class of metzincin proteases involved in reshaping the perineuronal net (PNN) and Mme encoding for Neprilysin, the enzyme degrading amyloid β-peptides. The pattern of expression of metalloproteases (MPs) was analyzed by single-cell reverse transcriptase multiplex PCR after patch clamp and was compared with the expression of 10 canonical interneurons markers and 12 additional genes from the Allen Atlas. Clustering of these genes by K-means algorithm displays five distinct clusters. Among these five clusters, two fast-spiking interneuron clusters expressing the calcium-binding protein Pvalb were identified, one co-expressing Pvalb with Sst (PV-Sst) and another co-expressing Pvalb with three metallopeptidases Adamts8, Adamts15 and Mme (PV-MP). By using Wisteria floribunda agglutinin, a specific marker for PNN, PV-MP interneurons were found surrounded by PNN, whereas the ones expressing Sst, PV-Sst, were not

    Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization : results for the North Pacific

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1673-1683, doi:10.1016/j.dsr2.2008.04.020.This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22°45' N 158°W; Hawaii; studied during June–July 2004) and the mesotrophic Subarctic Pacific K2 site (47°N, 161°W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Baxs) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Baxs contents were significantly larger at K2 than at ALOHA. At ALOHA the Baxs profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Baxs concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Baxs. Larger mesopelagic Baxs contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Baxs data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Baxs as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps, except in 1 case (out of 4). This discrepancy could indicate that differences in sinking velocities cause an 3 uncoupling of the processes occurring in the fine suspended particle pool from those affecting the larger particle pool which sustains the vertical flux, thus rendering comparison between both approaches risky.This research was supported by Federal Science Policy Office, Brussels through contracts EV/03/7A, SD/CA/03A, the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as the US National Science Foundation programs in Chemical and Biological Oceanography
    corecore