821 research outputs found

    Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of Rydberg states of NH

    Get PDF
    Results of combined theoretical and experimental studies of photoelectron spectra resulting from (2+1) resonance enhanced multiphoton ionization (REMPI) via the f ^1Π(3pσ), g ^1Δ(3pπ), and h ^1Σ^+(3pπ) Rydberg states of NH are reported. The overall agreement between these calculated and measured spectra is encouraging. Strong ΔN=N+−N’=even peaks, particularly for ΔN=0, are observed in these spectra. Low‐energy Cooper minima are predicted to occur in the l=2 wave of the kπ(^1Σ^+), kπ(^1Σ^−), and kπ(^1Δ) photoelectron channels for the f state, the kπ(^1Δ), kδ(^1Π), and kδ(^1Φ) channels for the g state, and the kπ(^1Σ^+) and kδ(^1Π) channels for the h state of NH. Depletion of the d wave (l=2) contributions to the photoelectron matrix element in the vicinity of these Cooper minima subsequently enhances the relative importance of the odd l  waves. The observed ΔN transitions are also affected by strong l  mixing in the electronic continuum induced by the nonspherical molecular potential. Interference of continuum waves between degenerate ionization channels also determines the spectral pattern observed for photoionization of the f ^1Π state of NH. Photoelectron angular distributions and the angular momentum compositions of photoelectron matrix elements provide further insight into the origin of these Cooper minima

    The Parasite Reduction Ratio (PRR) assay version 2: standardized assessment of Plasmodium falciparum viability after antimalarial treatment in vitro

    Get PDF
    With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction. © 2023 by the authors

    Ultrafast Magnetic Resonance Imaging for Iron Quantification in Thalassemia Participants in the Developing World The TIC-TOC Study (Thailand and UK International Collaboration in Thalassaemia Optimising Ultrafast CMR)

    Get PDF
    Thalassemia is the most common monogenetic disorder worldwide, with 60 000 infants with thalassemia major born annually.1 Survival often depends on regular blood transfusions to correct anemia and to reduce ineffective erythropoiesis, but these transfusions can result in iron overload and organ failure unless chelation therapy is undertaken. Serum ferritin levels continue to be used as a guide to chelation but are unreliable, and the availability of cardiovascular magnetic resonance (CMR) T2* imaging has transformed patient management by allowing organ-specific quantification of iron content. Countries with a high prevalence of thalassemia major have CMR, but magnet time is expensive and analytic expertise lacking. The aim of TIC-TOC (Thailand and UK International Collaboration in Thalassaemia Optimising Ultrafast CMR) was to investigate whether ultrafast CMR mapping could provide reliable immediate diagnoses of heart and liver iron content, eliminating the need for complex analysis, thus reducing costs to a level within local resources. The research received approval by the Institutional Review Board of the Faculty of Medicine at Chulalongkorn University. All participants provided written informed consent.</p

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Get PDF
    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts.Major funding for this project was provided to JPC by the Leverhulme Trust (Grant numbers RPG-2012-667 and F/09741/F: https://www. leverhulme.ac.uk/). Additional funding to JPC and studentships to support JHW and SCG came from the Biotechnological and Biological Sciences Research Council (Grant number BB/J011762/1: http://www.bbsrc.ac.uk/). Other additional funding was obtained from the Isaac Newton Trust (http://www. newtontrust.cam.ac.uk/: grant number 12.07/I to AMM).This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/:10.1371/journal.ppat.100579

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Citrullination facilitates cross-reactivity of rheumatoid factor with non-IgG1 Fc epitopes in rheumatoid arthritis

    Get PDF
    Rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs) are the two most prevalent autoantibodies in rheumatoid arthritis (RA), and are thought to have distinct autoantigen targets. Whilst RF targets the Fc region of antibodies, ACPAs target a far broader spectrum of citrullinated peptides. Here we demonstrate significant sequence and structural homology between proposed RF target epitopes in IgG1 Fc and the ACPA target fibrinogen. Two of the three homologous sequences were susceptible to citrullination, and this modification, which occurs extensively in RA, permitted significant cross-reactivity of RF+ patient sera with fibrinogen in both western blots and ELISAs. Crucially, this reactivity was specific to RF as it was absent in RF− patient and healthy control sera, and could be inhibited by pre-incubation with IgG1 Fc. These studies establish fibrinogen as a common target for both RF and ACPAs, and suggest a new mechanism in RF-mediated autoimmune diseases wherein RF may act as a precursor from which the ACPA response evolves

    Cultura de Inovação: Conceitos e Modelos Teóricos

    Get PDF
    This study portrays the state of the art in scientific literature on the culture of innovation, with the objective of characterizing its meaning and especially describing different theoretical models that seek to understand how it occurs in an organizational environment. To enrich the analysis, research results show the relationship between organizational culture and innovation. The literature review was carried out in 2011 using the following databases: Coordination for the Improvement of Higher Education Personnel (CAPES), Proquest and Directory of Open Access Journals (DOAJ). The keywords used were the expression culture of innovation and the joint terms culture and innovation, only full articles were included in the research. Culture of innovation articles that were cited in the papers identified in the literature search were also considered. The analysis consisted of 40 articles, based on the predefined criteria, and showed that this is a topic of interest for researchers in different world regions. It is a complex theme determined by factors with a systemic character. There is a predominance of quantitative research and strong evidence of a relationship between organizational culture and innovation, which requires further research to test the theoretical models proposed by these different authors

    A case study of Kanban implementation within the Pharmaceutical Supply Chain

    Get PDF
    The paper explores the implementation of the kanban system, which is a Lean technique, within the Pharmaceutical Supply Chain (PSC). The case study provides insight to the benefits and challenges arising from the application of this technique, within a group of cooperative pharmacists, in Greece. The research questions developed from the review of the literature were tested using evidence from field-based, action research within a pharmaceutical organisation. The reported case study contributes to the longer term debate on assessing the Lean maturity level within the healthcare sector. There are two primary findings: i) that the adoption of kanban system provides a strategic benefit and improves the quality of services. ii) it also provides a basis for a strategy of operational change; it gives the opportunity to the organisation to move away from the current push delivery and logistics systems toward improved logistics strategy models
    corecore