35 research outputs found

    Investigation of the physical causes of improved machinability of steel alloyed with calcium

    Get PDF
    Investigations have been carried out to determine the possibility of improving machinability of steel by alloying with calcium or other ingredients and also to explain the physi¬cal causes of improved machinability. Results of the experiments show that machina¬bility of steel can be raised several times without adversely affecting its physiomechanical properties. Causes of the improvement of machinability higher degree of hardening of the sulphides due to micro alloying with calcium. Hardened sulphides are ca¬pable of effectively resisting the movement of dislocations in the chip-tool plastic contact zones and as a result the percentage of the total work of plastic deformation spent in changing the internal energy of metal is much higher in the case of alloyed steel than that of the normal steel. And consequently the percentage of total work spent in raising the cutting temperature is much lower in the case of the alloyed steel. Relatively lower value of cutting temperature ultimately facilitates higher tool life, i.e. higher machinability of calcium alloyed steel

    A taxonomy of epithelial human cancer and their metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination.</p> <p>Methods</p> <p>We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures.</p> <p>Results</p> <p>Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination.</p> <p>Conclusion</p> <p>Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile.</p

    Current status of nuclear cardiology in the Russian Federation

    Get PDF
    The article is devoted to the analysis of the current status of nuclear cardiology in the Russian Federation. The data on the number of facilities performing radionuclide investigations for the diagnosis and monitoring of the treatment of cardiovascular diseases, their staffing and equipment are given. The statistics of the conducted nuclear cardiology tests for 2018-2020 are given, as well as their methods, features and diagnostic significance are described

    Cell Cycle Gene Networks Are Associated with Melanoma Prognosis

    Get PDF
    BACKGROUND: Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. CONCLUSIONS/SIGNIFICANCE: This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets

    助成研究報告

    Get PDF
    Melanoma is the most lethal form of skin cancer and successful treatment of metastatic melanoma remains challenging. BRAF/MEK inhibitors only show a temporary benefit due to rapid occurrence of resistance, whereas immunotherapy is mainly effective in selected subsets of patients. Thus, there is a need to identify new targets to improve treatment of metastatic melanoma. To this extent, we searched for markers that are elevated in melanoma and are under regulation of potentially druggable enzymes. Here, we show that the pro-proliferative transcription factor FOXM1 is elevated and activated in malignant melanoma. FOXM1 activity correlated with expression of the enzyme Pin1, which we found to be indicative of a poor prognosis. In functional experiments, Pin1 proved to be a main regulator of FOXM1 activity through MEK-dependent physical regulation during the cell cycle. The Pin1-FOXM1 interaction was enhanced by BRAFV600E, the driver oncogene in the majority of melanomas, and in extrapolation of the correlation data, interference with\ Pin1 in BRAFV600E-driven metastatic melanoma cells impaired both FOXM1 activity and cell survival. Importantly, cell-permeable Pin1-FOXM1-blocking peptides repressed the proliferation of melanoma cells in freshly isolated human metastatic melanoma ex vivo and in three-dimensional-cultured patient-derived melanoids. When combined with the BRAFV600E-inhibitor PLX4032 a robust repression in melanoid viability was obtained, establishing preclinical value of patient-derived melanoids for prognostic use of drug sensitivity and further underscoring the beneficial effect of Pin1-FOXM1 inhibitory peptides as anti-melanoma drugs. These proof-of-concept results provide a starting point for development of therapeutic Pin1-FOXM1 inhibitors to target metastatic melanoma.Oncogene advance online publication, 17 August 2015; doi:10.1038/onc.2015.282
    corecore