42 research outputs found

    Interacting partially directed self avoiding walk. From phase transition to the geometry of the collapsed phase

    Full text link
    In this paper, we investigate a model for a 1+11+1 dimensional self-interacting and partially directed self-avoiding walk, usually referred to by the acronym IPDSAW. The interaction intensity and the free energy of the system are denoted by ÎČ\beta and ff, respectively. The IPDSAW is known to undergo a collapse transition at ÎČc\beta_c. We provide the precise asymptotic of the free energy close to criticality, that is we show that f(ÎČc−ϔ)âˆŒÎłÏ”3/2f(\beta_c-\epsilon)\sim \gamma \epsilon^{3/2} where Îł\gamma is computed explicitly and interpreted in terms of an associated continuous model. We also establish some path properties of the random walk inside the collapsed phase (ÎČ>ÎČc)(\beta>\beta_c). We prove that the geometric conformation adopted by the polymer is made of a succession of long vertical stretches that attract each other to form a unique macroscopic bead, we identify the horizontal extension of the random walk inside the collapsed phase and we establish the convergence of the rescaled envelope of the macroscopic bead towards a deterministic Wulff shape.Comment: Accepted for publication in the Annals of Probabilit

    Critical exponents in zero dimensions

    Full text link
    In the vicinity of the onset of an instability, we investigate the effect of colored multiplicative noise on the scaling of the moments of the unstable mode amplitude. We introduce a family of zero dimensional models for which we can calculate the exact value of the critical exponents ÎČm\beta_m for all the moments. The results are obtained through asymptotic expansions that use the distance to onset as a small parameter. The examined family displays a variety of behaviors of the critical exponents that includes anomalous exponents: exponents that differ from the deterministic (mean-field) prediction, and multiscaling: non-linear dependence of the exponents on the order of the moment

    Effects of the low frequencies of noise on On-Off intermittency

    Full text link
    A bifurcating system subject to multiplicative noise can exhibit on-off intermittency close to the instability threshold. For a canonical system, we discuss the dependence of this intermittency on the Power Spectrum Density (PSD) of the noise. Our study is based on the calculation of the Probability Density Function (PDF) of the unstable variable. We derive analytical results for some particular types of noises and interpret them in the framework of on-off intermittency. Besides, we perform a cumulant expansion for a random noise with arbitrary power spectrum density and show that the intermittent regime is controlled by the ratio between the departure from the threshold and the value of the PSD of the noise at zero frequency. Our results are in agreement with numerical simulations performed with two types of random perturbations: colored Gaussian noise and deterministic fluctuations of a chaotic variable. Extensions of this study to another, more complex, system are presented and the underlying mechanisms are discussed.Comment: 13pages, 13 figure

    A mathematical model for a copolymer in an emulsion

    Get PDF
    Analysis and Stochastic

    On the localized phase of a copolymer in an emulsion: supercritical percolation regime

    Get PDF
    In this paper we study a two-dimensional directed self-avoiding walk model of a random copolymer in a random emulsion. The copolymer is a random concatenation of monomers of two types, AA and BB, each occurring with density 1/2. The emulsion is a random mixture of liquids of two types, AA and BB, organised in large square blocks occurring with density pp and 1−p1-p, respectively, where p∈(0,1)p \in (0,1). The copolymer in the emulsion has an energy that is minus α\alpha times the number of AAAA-matches minus ÎČ\beta times the number of BBBB-matches, where without loss of generality the interaction parameters can be taken from the cone {(α,ÎČ)∈R2 ⁣:Î±â‰„âˆŁÎČ∣}\{(\alpha,\beta)\in\R^2\colon \alpha\geq |\beta|\}. To make the model mathematically tractable, we assume that the copolymer is directed and can only enter and exit a pair of neighbouring blocks at diagonally opposite corners. In \cite{dHW06}, it was found that in the supercritical percolation regime p≄pcp \geq p_c, with pcp_c the critical probability for directed bond percolation on the square lattice, the free energy has a phase transition along a curve in the cone that is independent of pp. At this critical curve, there is a transition from a phase where the copolymer is fully delocalized into the AA-blocks to a phase where it is partially localized near the ABAB-interface. In the present paper we prove three theorems that complete the analysis of the phase diagram : (1) the critical curve is strictly increasing; (2) the phase transition is second order; (3) the free energy is infinitely differentiable throughout the partially localized phase.Comment: 43 pages and 10 figure

    A simple mechanism for the reversals of Earth's magnetic field

    Full text link
    We show that a model, recently used to describe all the dynamical regimes of the magnetic field generated by the dynamo effect in the VKS experiment [1], also provides a simple explanation of the reversals of Earth's magnetic field, despite strong differences between both systems.Comment: update version, with new figure

    Annealed scaling for a charged polymer

    Get PDF
    Analysis and Stochastic
    corecore