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Abstract: In this paper we study a two-dimensional directed self-avoiding walk model
of a random copolymer in a random emulsion. The copolymer is a random concatenation
of monomers of two types, A and B, each occurring with density 1

2 . The emulsion is
a random mixture of liquids of two types, A and B, organised in large square blocks
occurring with density p and 1− p, respectively, where p ∈ (0, 1). The copolymer in the
emulsion has an energy that is minus α times the number of AA-matches minus β times
the number of B B-matches, where without loss of generality the interaction parameters
can be taken from the cone {(α, β) ∈ R

2 : α ≥ |β|}. To make the model mathematically
tractable, we assume that the copolymer is directed and can only enter and exit a pair of
neighbouring blocks at diagonally opposite corners.

In [7], a variational expression was derived for the quenched free energy per monomer
in the limit as the length n of the copolymer tends to infinity and the blocks in the
emulsion have size Ln such that Ln → ∞ and Ln/n → 0. Under this restriction, the
free energy is self-averaging with respect to both types of randomness. It was found
that in the supercritical percolation regime p ≥ pc, with pc the critical probability for
directed bond percolation on the square lattice, the free energy has a phase transition
along a curve in the cone that is independent of p. At this critical curve, there is a
transition from a phase where the copolymer is fully delocalized into the A-blocks to
a phase where it is partially localized near the AB-interface. In the present paper we
prove three theorems that complete the analysis of the phase diagram : (1) the critical
curve is strictly increasing; (2) the phase transition is second order; (3) the free energy
is infinitely differentiable throughout the partially localized phase.

In the subcritical percolation regime p < pc, the phase diagram is much more
complex. This regime will be treated in a forthcoming paper.

1. Introduction and Main Results

1.1. Background. The problem considered in this paper is the localization transition of
a random copolymer near a random interface. Suppose that we have two immiscible
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liquids, say, oil and water, and a copolymer chain consisting of two types of monomer,
say, hydrophobic and hydrophilic. Suppose that it is energetically favourable for mono-
mers of one type to be in one liquid and for monomers of the other type to be in
the other liquid. At high temperatures the copolymer will delocalize into one of the
liquids in order to maximise its entropy, while at low temperatures energetic effects
will dominate and the copolymer will localize close to the interface between the two
liquids, because in this way it is able to place more than half of its monomers in their
preferred liquid. In the limit as the copolymer becomes long, we may expect a phase
transition.

In the literature most attention has focussed on models with a single flat infinite
interface or an infinite array of parallel flat infinite interfaces. Relevant references can
be found in the monograph by Giacomin [4] and in the theses by Caravenna [3] and
Pétrélis [9]. In the present paper we continue the analysis of a model introduced in den
Hollander and Whittington [7], where the interface has a random shape. In particular,
the situation was considered in which the square lattice is divided into large blocks, and
each block is independently labelled A (oil) or B (water) with probability p and 1 − p,
respectively, i.e., the interface has a percolation type structure. This is a primitive model
of an emulsion, consisting of oil droplets dispersed in water (see Fig. 1).

The copolymer consists of an i.i.d. random concatenation of monomers of type A
(hydrophobic) and B (hydrophilic). It is energetically favourable for monomers of type
A to be in the A-blocks and for monomers of type B to be in the B-blocks. Under
the restriction that the copolymer is directed and can only enter and exit a pair of
neighbouring blocks at diagonally opposite corners, it was shown that there are phase
transitions between phases where the copolymer is fully delocalized away from the
interface and phases where it is partially localized near the interface. Let pc ≈ 0.64 be
the critical probability for directed bond percolation on the square lattice. It turns out
that the phase diagram does not depend on p when p ≥ pc, while it does depend on
p when p < pc. In the present paper we focus on the supercritical percolation regime,
i.e., p ≥ pc.

Our paper is organised as follows. In the rest of Sect. 1 we recall the definition of the
model, state the relevant results from [7], and formulate three theorems for the supercri-
tical percolation regime. These theorems are proved in Sects. 3, 4 and 5, respectively.
Section 2 recalls the key variational formula for the free energy, as well as some basic
facts about block pair free energies and path entropies needed along the way.

Fig. 1. An undirected copolymer in an emulsion
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1.2. The model. Each positive integer is randomly labelled A or B, with probability 1
2

each, independently for different integers. The resulting labelling is denoted by

ω = {ωi : i ∈ N} ∈ {A, B}N (1.2.1)

and represents the randomness of the copolymer, with A denoting a hydrophobic mono-
mer and B a hydrophilic monomer. Fix p ∈ (0, 1) and Ln ∈ N. Partition R

2 into square
blocks of size Ln :

R
2 =

⋃

x∈Z2

�Ln (x), �Ln (x) = x Ln + (0, Ln]2. (1.2.2)

Each block is randomly labelled A or B, with probability p, respectively, 1 − p, inde-
pendently for different blocks. The resulting labelling is denoted by

� = {�(x) : x ∈ Z
2} ∈ {A, B}Z2

(1.2.3)

and represents the randomness of the emulsion, with A denoting oil and B denoting
water.

Let

• Wn = the set of n-step directed self-avoiding paths starting at the origin and being
allowed to move upwards, downwards and to the right.

• Wn,Ln = the subset of Wn consisting of those paths that enter blocks at a corner, exit
blocks at one of the two corners diagonally opposite the one where it entered, and in
between stay confined to the two blocks that are seen upon entering (see Fig. 2).

The corner restriction, which is unphysical, is put in to make the model mathematically
tractable. We will see that, despite this restriction, the model has physically relevant
behaviour.

Given ω,� and n, with each path π ∈ Wn,Ln we associate an energy given by the
Hamiltonian

Hω,�
n,Ln

(π) = −
n∑

i=1

(
α 1
{
ωi = �

Ln
(πi−1,πi )

= A
}

+ β 1
{
ωi = �

Ln
(πi−1,πi )

= B
})
,

(1.2.4)

Fig. 2. A directed self-avoiding path crossing blocks of oil and water diagonally. The light-shaded blocks
are oil, the dark-shaded blocks are water. Each block is Ln lattice spacings wide in both directions. The path
carries hydrophobic and hydrophilic monomers on the lattice scale, which are not indicated
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where (πi−1, πi ) denotes the ith step of the path and �Ln
(πi−1,πi )

denotes the label of
the block this step lies in. What this Hamiltonian does is count the number of AA-
matches and B B-matches and assign them energy −α and −β, respectively, where
α, β ∈ R. (Note that the interaction is assigned to bonds rather than to sites: we identify
the monomers with the steps of the path). As we will recall in Sect. 2.1, without loss of
generality we may restrict the interaction parameters to the cone

CONE = {(α, β) ∈ R
2 : α ≥ |β|}. (1.2.5)

Given ω,� and n, we define the quenched free energy per step as

f ω,�n,Ln
= 1

n
log Zω,�n,Ln

,

(1.2.6)
Zω,�n,Ln

=
∑

π∈Wn,Ln

exp
[
−Hω,�

n,Ln
(π)
]
.

We are interested in the limit n → ∞ subject to the restriction

Ln → ∞ and
1

n
Ln → 0. (1.2.7)

This is a coarse-graining limit where the path spends a long time in each single block
yet visits many blocks. In this limit, there is a separation between a copolymer scale and
an emulsion scale.

In [7], Theorem 1.3.1, it was shown that

lim
n→∞ f ω,�n,Ln

= f = f (α, β; p) (1.2.8)

exists ω,�-a.s. and in mean, is finite and non-random, and can be expressed as a varia-
tional problem involving the free energies of the copolymer in each of the four block
pairs it may encounter and the frequencies at which the copolymer visits each of these
block pairs on the coarse-grained block scale. This variational problem, which is recalled
in Sect. 2.1, will be the starting point of our analysis.

1.3. Phase diagram for p ≥ pc. In the supercritical regime the oil blocks percolate,
and so the coarse-grained path can choose between moving into the oil or running along
the interface between the oil and the water (see Fig. 3). We begin by recalling from den
Hollander and Whittington [7] the two main theorems for the supercritical percolation
regime (see Fig. 4).

Theorem 1.3.1. ([7], Theorem 1.4.1). Let p ≥ pc. Then (α, β) �→ f (α, β; p) is non-
analytic along the curve in CONE separating the two regions

D = delocalized phase = {(α, β) ∈ CONE : f (α, β; p) = 1
2α +�

}
,

(1.3.1)
L = localized phase = {(α, β) ∈ CONE : f (α, β; p) > 1

2α +�
}
.

Here, � = limn→∞ 1
n log |Wn,Ln | = 1

2 log 5 is the entropy per step of the walk subject
to (1.2.7).
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Fig. 3. Two possible strategies when the oil percolates

Theorem 1.3.2. ([7], Theorem 1.4.3). Let p ≥ pc.

(i) For every α ≥ 0 there exists a βc(α) ∈ [0, α] such that the copolymer is

delocalized if − α ≤ β ≤ βc(α),
(1.3.2)

localized if βc(α) < β ≤ α.

(ii) α �→ βc(α) is independent of p, continuous, non-decreasing and concave on [0,∞).
There exist α∗ ∈ (0,∞) and β∗ ∈ [α∗,∞) such that

βc(α) = α if α ≤ α∗,
(1.3.3)

βc(α) < α if α > α∗,

and

lim
α↓α∗

α − βc(α)

α − α∗ ∈ [0, 1), lim
α→∞βc(α) = β∗. (1.3.4)

The intuition behind Theorem 1.3.1 is as follows (see Fig. 3). Suppose that p > pc.
Then the A-blocks percolate. Therefore the copolymer has the option of moving to the
infinite cluster of A-blocks and staying inside that infinite cluster forever, thus seeing
only AA-blocks. In doing so, it loses an entropy of at most O(n/Ln) = o(n) (on the
coarse-grained scale), it gains an energy 1

2αn + o(n) (on the lattice scale, because only
half of its monomers are matched), and it gains an entropy�n+o(n) (on the lattice scale,
because it crosses blocks diagonally). Alternatively, the path has the option of running
along the boundary of the infinite cluster (at least part of the time), during which it
sees AB-blocks and (when β ≥ 0) gains more energy by matching more than half of its
monomers. Consequently,

f (α, β; p) ≥ 1
2α +�. (1.3.5)

The boundary between the two regimes in (1.3.1) corresponds to the crossover from
full delocalization into the A-blocks to partial localization near the AB-interfaces. The
critical curve does not depend on p as long as p> pc. Because p �→ f (α, β; p) is
continuous (see Theorem 2.1.1(iii) in Sect. 2.1), the same critical curve occurs at p = pc.
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The proof of Theorem 1.3.2 relies on a representation of D and L in terms of the single
interface (!) free energy (see Proposition 2.3.4 in Sect. 2.3). This representation, which
is key to the analysis of the critical curve, expresses the fact that localization occurs
for the emulsion free energy only when the single interface free energy is sufficiently
deep inside its localized phase. This gap is needed to compensate for the loss of entropy
associated with running along the interface and crossing at a steeper angle.

The intuition behind Theorem 1.3.2 is as follows (see Fig. 4). Pick a point (α, β)
inside D. Then the copolymer spends almost all of its time deep inside the A-blocks.
Increase β while keeping α fixed. Then there will be a larger energetic advantage for the
copolymer to move some of its monomers from the A-blocks to the B-blocks by crossing
the interface inside the AB-block pairs. There is some entropy loss associated with doing
so, but if β is large enough, then the energetic advantage will dominate, so that AB-
localization sets in. The value at which this happens depends on α and is strictly positive.
Since the entropy loss is finite, for α large enough the energy-entropy competition plays
out not only below the diagonal, but also below a horizontal asymptote. On the other
hand, for α small enough the loss of entropy dominates the energetic advantage, which
is why the critical curve has a piece that lies on the diagonal. The larger the value of α
the larger the value of β where AB-localization sets in. This explains why the critical
curve is non-decreasing. At the critical curve the single interface free energy is already
inside its localized phase. This explains why the critical curve has a slope discontinuity
at α∗.

1.4. Main results. In the present paper we prove three theorems, which complete the
analysis of the phase diagram in Fig. 4.

Theorem 1.4.1. Let p ≥ pc. Then α �→ βc(α) is strictly increasing on [0,∞).

Theorem 1.4.2. Let p ≥ pc. Then for every α ∈ (α∗,∞) there exist 0 < C1 < C2 < ∞
and δ0 > 0 (depending on p and α) such that

C1 δ
2 ≤ f (α, βc(α) + δ; p)− f (α, βc(α); p) ≤ C2 δ

2 ∀ δ ∈ (0, δ0]. (1.4.1)

Fig. 4. Qualitative picture of α �→ βc(α) for p ≥ pc
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Theorem 1.4.3. Let p ≥ pc. Then, under Assumption 5.2.2, (α, β) �→ f (α, β; p) is
infinitely differentiable throughout L.

Assumption 5.2.2 states that a certain intermediate single-interface free energy has a
finite curvature. We believe this assumption to be true, but have not managed to prove
it. See the end of Sect. 5.2, in particular, Remark 5.3.3, for a motivation and for a way
to weaken it.

Theorem 1.4.1 implies that the critical curve never reaches the horizontal asymptote,
which in turn implies that α∗ < β∗ and that the slope in (1.3.4) is > 0. Theorem 1.4.2
shows that the phase transition is second order off the diagonal. (In contrast, we know that
the phase transition is first order on the diagonal. Indeed, the free energy equals 1

2α +�
on and below the diagonal segment between (0, 0) and (α∗, α∗), and equals 1

2β +� on
and above this segment as is evident from interchanging α and β.) Theorem 1.4.3 tells us
that the critical curve is the only location in CONE where a phase transition of finite order
occurs. Theorems 1.4.1, 1.4.2 and 1.4.3 are proved in Sects. 3, 4 and 5, respectively.
Their proofs rely on perturbation arguments, in combination with exponential tightness
of the excursions away from the interface inside the localized phase.

The analogues of Theorems 1.4.2 and 1.4.3 for the single flat infinite interface were
derived in Giacomin and Toninelli [5,6]. For that model the phase transition is shown
to be at least of second order, i.e., only the quadratic upper bound is proved. Numerical
simulation indicates that the transition may well be of higher order.

The mechanisms behind the phase transition in the two models are different. While
for the single interface model the copolymer makes long excursions away from the
interface and dips below the interface during a fraction of time that is at most of order
δ2, in our emulsion model the copolymer runs along the interface during a fraction of
time that is of order δ, and in doing so stays close to the interface. Morover, because near
the critical curve for the emulsion model the single interface model is already inside its
localized phase, there is a variation of order δ in the single interface free energy. Thus,
the δ2 in the emulsion model is the product of two factors δ, one coming from the time
spent running along the interface and one coming from the variation of the constituent
single interface free energy away from its critical curve. See Sect. 4 for more details.

In the proof of Theorem 1.4.3 we use some of the ingredients of the proof in Giacomin
and Toninelli [6] of the analogous result for the single interface model. However, in the
emulsion model there is an extra complication, namely, the speed per step to move
one unit of space forward may vary (because steps are up, down and to the right),
while in the single interface model this is fixed at one (because steps are up-right and
down-right). We need to control the infinite differentiability with respect to this speed
variable. This is done by considering the Fenchel-Legendre transform of the free energy,
in which the dual of the speed variable enters into the Hamiltonian rather than in the set
of paths. Moreover, since the block pair free energies and the total free energy are both
given by variational problems, we need to show uniqueness of maximisers and prove
non-degeneracy of the Jacobian matrix at these maximisers in order to be able to apply
implicit function theorems. See Sect. 5 for more details.

1.5. Discussion. The corner restriction imposed through the set Wn,Ln in Sect. 1.2 is
unphysical. However, without this restriction the model would be very hard to analyze,
and would have a degree of difficulty comparable to that of the directed polymer in
random environment, for which no detailed phase diagram has yet been derived. If
the copolymer is allowed to exit a pair of blocks also at the corner to the right of the
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entrance corner, then this adds an extra critical curve to the phase diagram, namely, the
critical curve of the single linear interface. Our critical curve still persists, because the
copolymer has to cross AB-blocks diagonally every now and then in order to reach the
most favorable block environment. The order of the phase transition at our critical curve
is unaffected. The order of the extra critical curve would be the same as for the single
linear interface, i.e., second order or higher.

2. Preparations

In Sects. 2.1–2.3 we recall a few key facts from den Hollander and Whittington [7]
that will be crucial for the proofs. Section 2.1 gives the variational formula for the free
energy, Sect. 2.2 states two elementary lemmas about path entropies, while Sect. 2.3
states two lemmas for the block pair free energies and a proposition characterising the
localized phase of the emulsion free energy in terms of the single interface free energy.
Section 2.4 states a lemma about the tail behaviour of the single interface free energy
and the block pair free energies, showing that long paths wash out the effect of entropy.

2.1. Variational formula for the free energy. To formulate the key variational formula
for the free energy that serves as our starting point, we need three ingredients.
I. For L ∈ N and a ≥ 2 (with aL integer), let WaL ,L denote the set of aL-step directed
self-avoiding paths starting at (0, 0), ending at (L , L), and in between not leaving the
two adjacent blocks of size L labelled (0, 0) and (−1, 0) (see Fig. 5). For k, l ∈ {A, B},
let

ψωkl(aL , L) = 1

aL
log ZωaL ,L ,

ZωaL ,L =
∑

π∈WaL ,L

exp
[
−Hω,�

aL ,L(π)
]

when �(0, 0) = k and �(0,−1) = l,

(2.1.1)

denote the free energy per step in a kl-block when the number of steps inside the block
is a times the size of the block. Let

lim
L→∞ψ

ω
kl(aL , L) = ψkl(a) = ψkl(α, β; a). (2.1.2)

Note here that k labels the type of the block that is diagonally crossed, while l labels
the type of the block that appears as its neighbour at the starting corner (see Fig. 5). We
will recall in Sect. 2.3 that the limit exists ω-a.s. and in mean, and is non-random. Both
ψAA and ψB B take on a simple form, whereas ψAB and ψB A do not.
II. Let W denote the class of all coarse-grained paths 
 = {
 j : j ∈ N} that step
diagonally from corner to corner (see Fig. 4, where each dashed line with arrow denotes
a single step of 
). For n ∈ N, 
 ∈ W and k, l ∈ {A, B}, let

ρ�kl (
, n)

= 1

n

n∑

j=1

1

{
(
 j−1,
 j ) diagonally crosses a k-block in � that has an l-block
in � appearing as its neighbour at the starting corner

}
.

(2.1.3)
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Fig. 5. Two neighbouring blocks. The dashed line with arrow indicates that the coarse-grained path makes a
step diagonally upwards. The path enters at (0, 0), exits at (L , L), and in between stays confined to the two
blocks

Abbreviate

ρ�(
, n) = (ρ�kl (
, n)
)

k,l∈{A,B} , (2.1.4)

which is a 2 × 2 matrix with non-negative elements that sum up to 1. Let R�(
) denote
the set of all limits points of the sequence {ρ�(
, n) : n ∈ N}, and put

R� = the closure of the set
⋃


∈W
R�(
). (2.1.5)

Clearly, R� exists for all �. Moreover, since � has a trivial sigma-field at infinity (i.e.,
all events not depending on finitely many coordinates of � have probability 0 or 1) and
R� is measurable with respect to this sigma-field, we have

R� = R(p) �− a.s. (2.1.6)

for some non-random closed set R(p). This set, which depends on the parameter p
controlling �, is the set of all possible limit points of the frequencies at which the four
pairs of adjacent blocks can be seen along an infinite coarse-grained path. The elements
of R(p) are matrices

(
ρAA ρAB
ρB A ρB B

)
(2.1.7)

whose elements are non-negative and sum up to 1. In [7], Proposition 3.2.1, it was
shown that p �→ R(p) is continuous in the Hausdorff metric and that, for p ≥ pc, R(p)
contains matrices of the form

Mγ =
(

1 − γ γ

0 0

)
for γ ∈ C ⊂ (0, 1) closed. (2.1.8)

III. Let A be the set of 2 × 2 matrices whose elements are ≥ 2. The elements of these
matrices are used to record the average number of steps made by the path inside the four
block pairs divided by the block size.

With I–III in hand, we can state the variational formula for the free energy. Define

V : ((ρkl), (akl)) ∈ R(p)× A �→
∑

kl ρklaklψkl(akl)∑
kl ρklakl

. (2.1.9)
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Theorem 2.1.1. ([7], Theorem 1.3.1).

(i) For all (α, β) ∈ R
2 and p ∈ (0, 1),

lim
n→∞ f ω,�n,Ln

= f = f (α, β; p) (2.1.10)

exists ω,�-a.s. and in mean, is finite and non-random, and is given by

f = sup
(ρkl )∈R(p)

sup
(akl )∈A

V ((ρkl), (akl)). (2.1.11)

(ii) (α, β) �→ f (α, β; p) is convex on R
2 for all p ∈ (0, 1).

(iii) p �→ f (α, β; p) is continuous on (0, 1) for all (α, β) ∈ R
2.

(iv) For all (α, β) ∈ R
2 and p ∈ (0, 1),

f (α, β; p) = f (β, α; 1 − p),
(2.1.12)

f (α, β; p) = 1
2 (α + β) + f (−β,−α; p).

Part (iv) is the reason why without loss of generality we may restrict the parameters to
the cone in (1.2.5).

The behaviour of f as a function of (α, β) is different for p ≥ pc and p < pc (recall
that pc is the critical probability for directed bond percolation on the square lattice).
The reason is that the coarse-grained paths
, which determine the set R(p), sample�
just like paths in directed bond percolation on the square lattice rotated by 45 degrees
sample the percolation configuration (see Fig. 6).

2.2. Path entropies. The two lemmas in this section identify the path entropies associa-
ted with crossing a block and running along an interface. They are based on straightfor-
ward computations and are crucial for the analysis of the model.

Fig. 6. 
 sampling �. The dashed lines with arrows indicate the steps of 
. The block pairs encountered in
this example are B B, AA, B A and AB
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Let

DOM = {(a, b) : a ≥ 1 + b, b ≥ 0}. (2.2.1)

For (a, b) ∈ DOM, let NL(a, b) denote the number of aL-step self-avoiding directed
paths from (0, 0) to (bL , L) whose vertical displacement stays within (−L , L] (aL and
bL are integer). Let

κ(a, b) = lim
L→∞

1

aL
log NL(a, b). (2.2.2)

Lemma 2.2.1. ([7], Lemma 2.1.1).

(i) κ(a, b) exists and is finite for all (a, b) ∈ DOM.
(ii) (a, b) �→ aκ(a, b) is continuous and strictly concave on DOM and analytic on the

interior of DOM.
(iii) For all a ≥ 2,

aκ(a, 1) = log 2 + 1
2

[
a log a − (a − 2) log(a − 2)

]
. (2.2.3)

(iv) supa≥2 κ(a, 1) = κ(a∗, 1) = 1
2 log 5 with unique maximiser a∗ = 5

2 .
(v) ( ∂

∂a κ)(a
∗, 1) = 0 and a∗( ∂

∂bκ)(a
∗, 1) = 1

2 log 9
5 .

(vi) ( ∂
2

∂a2 κ)(a
∗, 1) = − 8

25 , ( ∂
2

∂b2 κ)(a
∗, 1) = − 262

225 and ( ∂2

∂a∂bκ)(a
∗, 1) = − 2

25 log 9
5 +

44
75 .

Part (vi), which was not stated in [7], follows from a direct computation via [7],
Eqs. (2.1.5), (2.1.8) and (2.1.9).

For µ ≥ 1, let N̂L(µ) denote the number of µL-step self-avoiding paths from (0, 0)
to (L , 0) with no restriction on the vertical displacement (µL is integer). Let

κ̂(µ) = lim
L→∞

1

µL
log N̂L(µ). (2.2.4)

Lemma 2.2.2. ([7], Lemma 2.1.2).

(i) κ̂(µ) exists and is finite for all µ ≥ 1.
(ii) µ �→ µκ̂(µ) is continuous and strictly concave on [1,∞) and analytic on (1,∞).

(iii) κ̂(1) = 0 and µκ̂(µ) ∼ logµ as µ → ∞.
(iv) supµ≥1 µ[κ̂(µ)− 1

2 log 5] < 1
2 log 9

5 .

2.3. Free energies per pair of blocks. In this section we identify the block pair free
energies. In [7], Proposition 2.2.1, we showed that ω-a.s. and in mean,

ψAA(a) = 1
2α + κ(a, 1) and ψB B(a) = 1

2β + κ(a, 1). (2.3.1)

Both are easy expressions, because AA-blocks and B B-blocks have no interface.
To compute ψAB(a) and ψB A(a), we first consider the free energy per step when

the path moves in the vicinity of a single linear interface I separating a liquid A in the
upper halfplane from a liquid B in the lower halfplane including the interface itself. To
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that end, for c ≥ b > 0, let WcL ,bL denote the set of cL-step directed self-avoiding
paths starting at (0, 0) and ending at (bL , 0). Define

ψ
ω,I
L (c, b) = 1

cL
log Zω,IcL ,bL (2.3.2)

with

Zω,IcL ,bL =
∑

π∈WcL ,bL

exp
[
−Hω,I

cL (π)
]
,

Hω,I
cL (π) = −

cL∑

i=1

(α 1{ωi = A, (πi−1, πi ) > 0} + β 1{ωi = B, (πi−1, πi ) ≤ 0}) ,

(2.3.3)

where (πi−1, πi ) > 0 means that the ith step lies in the upper halfplane and (πi−1, πi )≤0
means that the ith step lies in the lower halfplane or in the interface (see Fig. 7).

For a ∈ [2,∞), let

DOM(a) = {(c, b) ∈ R
2 : 0 ≤ b ≤ 1, c ≥ b, a − c ≥ 2 − b}. (2.3.4)

Lemma 2.3.1. ([7], Lemma 2.2.1). For all (α, β) ∈ R
2 and c ≥ b > 0,

lim
L→∞ψ

ω,I
L (c, b) = φI(c/b) = φI(α, β; c/b) (2.3.5)

exists ω-a.s. and in mean, and is non-random.

Lemma 2.3.2. ([7], Lemma 2.2.2). For all (α, β) ∈ R
2 and a ≥ 2,

aψAB(a) = aψAB(α, β; a)

= sup
(c,b)∈DOM(a)

{
cφI(c/b) + (a − c)

[ 1
2α + κ(a − c, 1 − b)

]}
. (2.3.6)

Lemma 2.3.3. ([7], Lemma 2.2.3). Let k, l ∈ {A, B}.
(i) For all (α, β) ∈ R

2, a �→ aψkl(α, β; a) is continuous and concave on [2,∞).
(ii) For all a ∈ [2,∞), α �→ ψkl(α, β; a) and β �→ ψkl(α, β; a) are continuous and

non-decreasing on R.

Fig. 7. Illustration of (2.3.2–2.3.3) for c = µ and b = 1
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The idea behind Lemma 2.3.2 is that the copolymer follows the AB-interface over
a distance bL during cL steps and then wanders away from the AB-interface to the
diagonally opposite corner over a distance (1 − b)L during (a − c)L steps. The optimal
strategy is obtained by maximising over b and c (see Fig. 8). A similar expression holds
for ψB A.

The key result behind the analysis of the critical curve in Fig. 4 is the following
proposition, whose proof relies on Lemmas 2.3.1–2.3.3.

Proposition 2.3.4. ([7], Proposition 2.3.1)
Let p ≥ pc. Then (α, β) ∈ L if and only if

sup
µ≥1

µ
[
φI(α, β;µ)− 1

2α − 1
2 log 5

]
> 1

2 log 9
5 . (2.3.7)

Note that 1
2α + 1

2 log 5 is the free energy per step when the copolymer diagonally crosses
an A-block. What Proposition 2.3.4 says is that for the copolymer in the emulsion to
localize, the excess free energy of the copolymer along the interface must be sufficiently
large to compensate for the loss of entropy of the copolymer coming from the fact that
it must diagonally cross the block at a steeper angle (see Fig. 8).

We have

φI(µ) ≥ 1
2α + κ̂(µ)∀µ > 1,

φI(µ) ≤ α + κ̂(µ)∀µ ≥ 1, (2.3.8)

where κ̂(µ) is the entropy defined in (2.2.4). The upper bound and the gap in Lemma
2.2.2(iv) are responsible for the linear piece of the critical curve in Fig. 4. In analogy
with Lemma 2.2.2, we further note that, for all (α, β) ∈ R

2, µ �→ µφI(µ) is finite
and concave on [1,∞), and hence is continuous on (1,∞). In the definition of φI the
interface belongs to solvent B (see (2.3.3)), so that φI(1) = 1

2β. Finally, by mimicking
the proof of Lemma 2.4.1(i) below, we can show that limµ↓1 φ

I(µ) = 1
2α.

2.4. Tail behaviour of free energies for long paths. In this section we show that long
paths wash out the effect of entropy. This will be needed later for compactification
arguments.

Fig. 8. Two possible strategies inside an AB-block: The path can either move straight across or move along
the interface for awhile and then move across. Both strategies correspond to a coarse-grained step diagonally
upwards as in Fig. 6
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Let P
ω,I
µL denote the law of the copolymer of length µL in the single interface model

with the energy shifted by −α
2 , i.e.,

P
ω,I
µL (π) = 1

Zω,IµL ,L

exp
[
−Hω,I

µL (π)
]
, π ∈ WµL ,L , (2.4.1)

with

Hω,I
µL (π) = −

µL∑

i=1

(−α 1{ωi = A} + β 1{ωi = B}) 1{(πi−1, πi ) ≤ 0}. (2.4.2)

Let

φI(µ) = φI(α, β;µ) = lim
L→∞φ

ω,I
µL ω − a.s. with

φ
ω,I
µL = φ

ω,I
µL (α, β) = 1

µL
log Zω,IµL ,L (2.4.3)

(compare with (2.3.3)). Henceforth we adopt this shift, but we retain the same notation.
The reader must keep this in mind throughout the sequel!

Lemma 2.4.1. For any β0 > 0,

(i) limµ→∞ φI(α, β;µ) = 0,
(ii) lima→∞ ψAB(α, β; a) = 0, uniformly in α ≥ β and β ≤ β0.

Proof. (i) Recall the definition of WµL ,L in Sect. 2.3. Abbreviate χi = 1{ωi = B}−1
{ωi = A}. Because α ≥ β and β ≤ β0, we have

φI(α, β;µ) ≤ lim
L→∞

1

µL
log

∑

π∈WµL ,L

exp

⎡

⎣β
µL∑

i=1

χi 1{(πi−1, πi ) ≤ 0}
⎤

⎦

≤ κ̂(µ) + β0 lim sup
L→∞

1

µL
max

π∈WµL ,L

⎧
⎨

⎩

µL∑

i=1

χi 1{(πi−1, πi ) ≤ 0}
⎫
⎬

⎭ . (2.4.4)

We know from Lemma 2.2.2(iii) that limµ→∞ κ̂(µ) = 0. Therefore it suffices to show
that for every ε > 0 there exists a µ0(ε) ≥ 2 such that

lim sup
L→∞

1

µL
max

π∈WµL ,L

⎧
⎨

⎩

µL∑

i=1

χi 1{(πi−1, πi ) ≤ 0}
⎫
⎬

⎭ ≤ ε ω − a.s. ∀µ ≥ µ0(ε).

(2.4.5)

The random variables χi are i.i.d. ±1 with probability 1
2 . Let I j be the set of indices

i in the jth excursion of π on or below the interface. Then
∑µL

i=1 χi 1{(πi−1, πi ) ≤
0} = ∑

j
∑

i∈I j
χi . Let Fµ,L denote the family of all possible sequences I = (I j ) as
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π runs over the set WµL ,L , and write |I | = ∑
j |I j |. For 0 < ε ≤ 1, consider the

quantity

pµ,L ,ε = P

⎛

⎝∃I ∈ Fµ,L :
∑

j

∑

i∈I j

χi ≥ εµL

⎞

⎠ , (2.4.6)

where P denotes the probability law of ω. By the exponential Markov inequality, there
exists a C > 0 such that

P

(
N∑

i=1

χi ≥ εRN

)
≤ e−Cε2 RN ∀ N , R ≥ 1, ∀ 0 < ε ≤ 1. (2.4.7)

Since |I | ≤ µL for all I ∈ Fµ,L , we can apply (2.4.7) with N = |I | and R = µL/|I |
to estimate

pµ,L ,ε ≤
∑

I∈Fµ,L

P

⎛

⎝
∑

j

∑

i∈I j

χi ≥ ε
µL

|I | |I |
⎞

⎠ ≤ |Fµ,L | e−Cε2µL . (2.4.8)

Since

|Fµ,L | ≤
(
µL

L

)2

= exp [C(µ)L + o(L)] as L → ∞, (2.4.9)

with C(µ) ∼ logµ as µ → ∞, there exists a C ′ > 0 such that, for µ ≥ 2 and L large
enough, |Fµ,L | ≤ exp[LC ′ logµ] and hence pµ,L ,ε ≤ exp[L(C ′ logµ−Cε2µ)]. Thus,
there exists a µ0(ε) ≥ 2 such that for µ ≥ µ0(ε),

∞∑

L=1

pµ,L ,ε < ∞. (2.4.10)

The Borel-Cantelli lemma now allows us to assert that, ω-a.s. for µ ≥ µ0(ε) and L
large enough, the inequality

∑
j
∑

i∈I j
χi ≤ εµL holds uniformly in I ∈ Fµ,L . Hence

(2.4.5) is true indeed.
(ii) This follows from a similar argument. The counterpart of Eq. (2.4.4) is (recall (2.2.1)-
(2.2.2))

ψAB(α, β; a) ≤ κ(a, 1) + β0 lim sup
L→∞

1

aL
max

π∈NL (a,1)

{
aL∑

i=1

χi 1{(πi−1, πi ) ≤ 0}
}
.

(2.4.11)

Lemma 2.2.1(iii) implies that κ(a, 1) → 0 as a → ∞, while the proof that ω-a.s. the
second term in the r.h.s. of (2.4.11) tends to 0 is the same as in (i). ��

3. Proof of Theorem 1.4.1

In Sect. 3.1 we derive a proposition stating that the excursions away from the interface
are exponentially tight in the localized phase. In Sect. 3.2 we use this proposition to
prove Theorem 1.4.1.
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3.1. Tightness of excursions. We will call the triple (α, β, µ) ∈ CONE × [1,∞) weakly
localized if (recall Proposition 2.3.4 and (2.4.1–2.4.3))

α ∈ (α∗,∞) and sup
ν≥1

ν
[
φI(α, β; ν)−�

]
= µ

[
φI(α, β;µ)−�

]
≥ ς (3.1.1)

with

� = 1
2 log 5 and ς = 1

2 log 9
5 . (3.1.2)

Let lµL denote the number of strictly positive excursions in π ∈ WµL ,L . For
k = 1, . . . , lµL , let τk denote the length of the kth such excursion in π .

Proposition 3.1.1. Let (α, β, µ) be a weakly localized triple. Then for every C > 0
there exists an M0 = M0(C) such that for M ≥ M0,

lim
L→∞ E

⎛

⎝P
ω,I
µL

⎛

⎝
lµL∑

k=1

τk1{τk ≥ M} ≥ CµL

⎞

⎠

⎞

⎠ = 0. (3.1.3)

Proof. Along the way we need the following concentration inequality for the free energy
of the single interface. Let φω,IµL = (1/µL) log Zω,IµL ,L (recall (2.3.3)).

Lemma 3.1.2. There exist C1,C2 > 0 such that for all ε > 0, (α, β, µ) ∈ CONE×[1,∞)

and L ∈ N,

P

(∣∣∣φω,IµL (α, β)− E

(
φ
ω,I
µL (α, β)

)∣∣∣ ≥ ε
)

≤ C1 exp
[
−ε2µL/C2(α + β)

]
. (3.1.4)

Proof. See Giacomin and Toninelli [6]. The argument for their single interface model
readily extends to our single interface model. ��
Step 1. Throughout the proof, (α, β, µ) is a weakly localized triple and C ∈ (0, 1). Fix
M . For π ∈ WµL ,L , we let

KL = KL(π) = {k ∈ {1, . . . , lµL} : τk ≥ M}. (3.1.5)

We also define

W̃L =
⎧
⎨

⎩π ∈ WµL ,L :
∑

k∈KL

τk ≥ CµL

⎫
⎬

⎭ ,

QL = {CµL , . . . , µL} × {1, . . . , L} × {1, . . . , µL/M}. (3.1.6)

Note that W̃L is the union of the events (As,r,t )(s,r,t)∈QL with

As,r,t =
⎧
⎨

⎩
∑

k∈KL

τk = s

⎫
⎬

⎭ ∩
⎧
⎨

⎩
∑

k∈KL

τk/µk = r

⎫
⎬

⎭ ∩ {|KL | = t} , (3.1.7)

where µk is the number of steps divided by the number of horizontal steps in the
kth strictly positive excursion. Let v = (v1

k , v
2
k )k∈KL denote the starting points and

ending points of the successive positive excursions of length ≥ M . If VL denotes all
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possible values of v, then As,r,t is the union of the events (Avs,r,t )v∈VL . We will estimate

E(P
ω,I
µL (A

v
s,r,t )).

Step 2. We want to bound from above the quantity

E

(
P
ω,I
µL

(
Avs,r,t

)) = E

((∑
π∈Avs,r,t

e−Hω,I
µL (π)

)
e−µLφω,IµL

)
. (3.1.8)

To that end, we concatenate the excursions of π in [v2
k−1, v

1
k ], k ∈ {1, . . . , t}, as follows.

Since these excursions start and end at the interface, either with a horizontal step or
with a vertical step up, we concatenate them by adding a strictly positive excursion of
3 steps between them. The latter has no effect on the Hamiltonian. We also concatenate
the strictly positive excursions in [v1

k , v
2
k ], k ∈ {1, . . . , t}, by adding 1 horizontal step

between them. Thus, if we abbreviate S1 = µL − s + 3t and S2 = L − r + t , and if we
denote by ωv the concatenation of the ωi in [v2

k−1, v
1
k ], k ∈ {1, . . . , t}, then we have

∑
π∈Avs,r,t

e−Hω,I
µL (π) ≤∑π∈WS1,S2

e
−Hωv,I

S1
(π)

K (s + t, r + t), (3.1.9)

where K (a, b) is the number of strictly positive excursions of length a that make b
horizontal steps. A standard superadditivity argument gives

K (s + t, r + t) ≤ e(s+t)κ̂( s+t
r+t ) (3.1.10)

with κ̂ the entropy function defined in (2.2.4). Put µ̂ = S1/S2. Then with (3.1.10) we
can rewrite (3.1.9) as

∑
π∈Avs,r,t

e−Hω,I
µL (π) ≤ e

S1 φ
ωv,I
µ̂S2 e(s+t) κ̂( s+t

r+t ). (3.1.11)

At this stage, two cases need to be distinguished. Fix η > 0.
Case S1 ≥ ηL. Let

A1 =
{
φ
ω,I
µL ≤ E

(
φ
ω,I
µL

)
− ε
}
,

(3.1.12)
A2 =

{
φ
ωv,I
µ̂S2

≥ E

(
φ
ωv,I
µ̂S2

)
+ ε
}
.

Since µL ≥ µ̂S2 = S1 ≥ ηL , Lemma 3.1.2 gives the large deviation inequality

max{P(A1),P(A2)} ≤ C1 exp
[
−ε2ηL/C2(α + β)

]
. (3.1.13)

By superadditivity, we have E(φ
ωv,I
µ̂S2

) ≤ supL∈N E(φ
ωv,I
µ̂L ) = φI(µ̂). Moreover, for L

large enough, we have E(φ
ω,I
µL ) ≥ φI(µ) − ε. Hence, it follows from (3.1.11–3.1.13)

that

E

(
P
ω,I
µL

(
Avs,r,t

)) = E

((∑
π∈Avs,r,t

e−Hω,I
µL (π)

)
e−µLφω,IµL

)

≤ P(A1) + P(A2) + E

((∑
π∈Avs,r,t

e−Hω,I
µL (π)

)
e−µLφω,IµL 1Ac

1∩Ac
2

)

≤ 2C1e−ε2ηL/C2(α+β) + eS1(φ
I (µ̂)+ε) e−µL(φI (µ)−2ε) e(s+t) κ̂( s+t

r+t ).

(3.1.14)
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Case S1 ≤ ηL. Note that, for (α, β) ∈ CONE, the trivial inequality φω,IµL ≤ α + κ̂(µ)
(compare with (2.3.8)) and Lemma 2.2.2 (iii) are sufficient to assert that there exists an
Rα > 0 such that φω,IµL ≤ Rα for all µ ≥ 1, L ∈ N and ω. Therefore also φωv,I

µ̂S2
≤ Rα

for all µ̂ ≥ 1, S2 ∈ N and ωv , and so it follows from (3.1.11–3.1.13) that

E

(
P
ω,I
µL

(
Avs,r,t

)) = E

((∑
π∈Avs,r,t

e−Hω,I
µL (π)

)
e−µLφω,IµL

)

= P(A1) + E

((∑
π∈Avs,r,t

e−Hω,I
µL (π)

)
e−µLφω,IµL 1Ac

1

)

≤ C1e−ε2µL/C2β + eS1 Rα e−µL(φI (µ)−2ε) e(s+t) κ̂( s+t
r+t ). (3.1.15)

Step 3. To bound the quantity S1φ
I(µ̂) = S1φ

I(S1/S2) in (3.1.14), we define x = s/µL
and µ̃ = s/r . Then S1 = µL(1 − x) + 3t and S2 = L(1 − xµ/µ̃) + t . Since (α, β, µ) is
a weakly localized triple (recall (3.1.1)), we have S1φ

I(S1/S2) ≤ µS2φ
I(µ)+�(S1 −

µS2), with � given in (3.1.2). This can be further estimated by

S1φ
I(S1/S2) ≤ µLφI(µ)−� xµL + x

µ2

µ̃
L[� − φI(µ)]

+t
[
µφI(µ) +�(3 − µ)

]
(3.1.16)

≤ µLφI(µ)− 5
6� xµL , (3.1.17)

where we use that� −φI(µ) ≤ 0, t ≤ µL/M , and M is large enough (by assumption).
Next, let µ0 be such that κ̂(ν) ≤ �

2 for all ν ≥ µ0
2 (which is possible by Lemma

2.2.2(iii)).
Case µ̃ ≥ µ0. Since s ≥ cµL and t ≤ µL/M , if µ̃ ≥ µ0, then (s + t)/(r + t) ≥
µ̃/(1 + t/r) ≥ µ0

2 . Since s + t ≤ xµL +µL/M , it follows from (3.1.17) that for M large
enough,

S1 φ
I(S1/S2) + (s + t) κ̂

(
s + t

r + t

)
≤ µLφI(µ)− 1

6� xµL . (3.1.18)

Case µ̃ ≤ µ0. For µ̃ < µ0, we first note that, by Lemma 2.2.2(iv) and (3.1.1), there
exists a z > 0 such that

sup
y≥1

y[κ̂(y)−� ] = µ(φI(µ)−�)− z. (3.1.19)

Therefore, picking y = (s + t)/(r + t) in (3.1.19), we get

(s + t)κ̂

(
s + t

r + t

)
≤ µ(r + t)φI(µ) +� [(s + t)− µ(r + t)] − z(r + t)

≤ µrφI(µ) +�(s − µr)− zr +
C ′L
M

= x
µ2L

µ̃
φI(µ) +� xµL

(
1 − µ

µ̃

)
− z

xµL

µ̃
+

C ′L
M
, (3.1.20)
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where C ′ = C ′(µ) > 0 and the second line uses t ≤ µL/M . Summing (3.1.16) and
(3.1.20), we obtain that for M large enough,

S1φ
I(S1/S2) + (s + t)κ̂

(
s + t

r + t

)
≤ µLφI(µ)− z

xµL

µ̃
+

C ′L
M
. (3.1.21)

Since x ≥ C and µ̃ ≤ µ0, we can choose M large enough such that the r.h.s. of (3.1.21)
is bounded from above by µLφI(µ)− zC

2µ̃0
µL .

Setting C3 = inf{zC/2µ̃0,�C/6}, we obtain that the r.h.s. of (3.1.18) and (3.1.21) are
both bounded from above by µLφI(µ)− C3µL .
Step 4. In the case S1 ≥ ηL , (3.1.14) becomes

E

(
P
ω,I
µL (A

v
s,r,t )

)
≤ 2C1e−ε2ηL/C2(α+β) + eµL(−C3+3ε), (3.1.22)

while in the case S1 ≤ ηL we choose η ≤ C3/2Rα , and (3.1.15) becomes

E

(
P
ω,I
µL (A

v
s,r,t )

)
≤ C1e−ε2µL/C2(α+β) + eµL(− 1

2 C3+2ε). (3.1.23)

Thus, there are C4,C5 > 0 such that, for ε small enough,

E

(
P
ω,I
µL (A

v
s,r,t )

)
≤ C4e−C5µL . (3.1.24)

Therefore it remains to estimate the number of possible values of (s, r, t) and v. Since
(s, r, t) ∈ {1, . . . , µL}3, there are at most (µL)3 such triples. At fixed t , choosing v
amounts to choosing t starting points and t ending points for the excursions, which can
be done in at most

(
µL
2t

) ≤ (
µL

2µL/M

)
ways when M ≥ 4. By Stirling’s formula there

exists a C ′′ > 0 such that for all M ≥ 4 and L ∈ N,
(

µL

2µL/M

)
≤ C ′′√µL ed(M)µL with d(M) = − 2

M log
(

2
M

)
−
(

1 − 2
M

)
log
(

1 − 2
M

)
.

(3.1.25)

Since limM→∞ d(M) = 0, we have d(M) ≤ C5/2 for some C5 > 0 and M large
enough. Therefore

∑

(s,r,t)∈QL

∑

v

E

(
P
ω,I
µL (A

v
s,r,t )

)
≤ C4 C ′′ (µL)7/2 e−C5µL/2. (3.1.26)

Since the l.h.s. equals the expectation in (3.1.3), we have completed the proof. ��

3.2. Proof of Theorem 1.4.1. The proof uses Lemma 2.2.1 and Proposition 3.1.1.
Step 1. From Theorem 1.3.2(ii) we know that α �→ βc(α) is non-decreasing and
converges to a finite limit β∗ as α → ∞. Equation (2.3.7), which gives a criterion
for the localization of the copolymer at AB-interfaces, implies that

sup
µ≥1

µ[φI(α, βc(α);µ)−� ] = ς ∀α ≥ 0 (3.2.1)

with �,ς defined in (3.1.2) (recall the energy shift made in (2.4.1–2.4.3)). Lemma
2.4.1 asserts that φI(α, βc(α);µ) tends to zero as µ → ∞, uniformly in α ≥ 0. Since



844 F. den Hollander, N. Pétrélis

φI(α, βc(α); 1) = 0 for all α > 0 (the path lies in the interface), it follows that the
supremum in (3.2.1) is attained at some µα > 1. Therefore, if we can prove that

φI(α′, βc(α);µα) > φI(α, βc(α);µα) ∀α > α′, (3.2.2)

then

sup
µ≥1

µ[φI(α′, βc(α);µ)−� ] ≥ µα[φI(α′, βc(α);µα)−� ]

> µα[φI(α, βc(α);µα)−� ] = ς, (3.2.3)

and hence βc(α) > βc(α
′).

Step 2. Let α′ > α and

D = φI(α′, βc(α);µα)− φI(α, βc(α);µα)

= lim
L→∞

1

µαL

⎡

⎣log
∑

π∈Wµα L ,L

e−Hω,I
µα L (α

′,βc(α);π) − log
∑

π∈Wµα L ,L

e−Hω,I
µα L (α,βc(α);π)

⎤

⎦

= lim
L→∞

1

µαL
log E

ω,I
µαL

⎛

⎝exp

⎡

⎣(α − α′)
µαL∑

i=1

1{ωi = A, (πi−1, πi ) ≤ 0}
⎤

⎦

⎞

⎠ ,

(3.2.4)

where the expectation is w.r.t. the law of the copolymer with parameters α and βc(α),
which are both suppressed from the notation. For ε > 0, let Aε,L = {π : ∑µαL

i=1 1{ωi =
A, (πi−1, πi ) ≤ 0} ≥ εµαL}. Then we may estimate

D ≥ lim sup
L→∞

1

µαL
log
[
e(α−α′)εµαL

P
ω,I
µαL(Aε,L) + P

ω,I
µαL([Aε,L ]c)

]
. (3.2.5)

We will prove that, for ε small enough, there is a subsequence (Lm)m∈N such that
limm→∞ P

ω,I
µαLm

([Aε,Lm ]c) = 0ω-a.s. This willl imply that D ≥ (α−α′)ε and complete
the proof.
Step 3. We recall that lµαL denotes the number of strictly positive excursions in

π ∈ WµαL ,L . By Proposition 3.1.1, ω-a.s., P
ω,I
µαL(

∑lµα L
k=1 τk1{τk ≥ M} ≥ CµαL)

tends to zero as L → ∞ along a subsequence. Moreover, ω-a.s.,
∑µαL

i=1 1{ωi = A} ≥
1
2µαL − CµαL for L large enough. Thus, putting s = 1

2 − 2C − ε, for L large enough
we have the inclusion

[Aε,L ]c ⊂
⎧
⎨

⎩

lµα L∑

k=1

τk1{τk ≥ M} ≥ CµαL

⎫
⎬

⎭

∪
⎧
⎨

⎩

⎧
⎨

⎩

µαL∑

i=1

1{ωi = A}1{�M
i = 1} ≥ sµαL

⎫
⎬

⎭ ∩ [Aε,L ]c

⎫
⎬

⎭ , (3.2.6)

where�M
i is the indicator of the event the ith step lies in a strictly positive excursion of

length ≤ M .
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From now on we fix C = 1
8 and ε ≤ 1

8 , implying that s ≥ 1
8 . We also fix M such that

Proposition 3.1.1 holds for C = 1
8 . The proof will be completed once we show that

lim
L→∞ P

ω,I
µαL(Bε,L) = 0 ω − a.s., (3.2.7)

where

Bε,L =
⎧
⎨

⎩π :
µαL∑

i=1

1{ωi = A}1{�M
i = 1} ≥ sµαL

⎫
⎬

⎭ ∩ [Aε,L ]c. (3.2.8)

Each path of Bε,L puts at least sµαL monomers labelled by A in strictly positive excur-
sions of length ≤ M and at most εµαL monomers labelled by A in non-positive excur-
sions.
Step 4. For π ∈ Bε,L , let EL(π) label the excursions of π that are strictly positive,
have length ≤ M and contain at least 1 monomer labelled by A. Abbreviate rL(π) =
|EL(π)| ≥ sµαL/M . Partition EL(π) into two parts:

– E1
L(π): those excursions whose preceding and subsequent non-positive excursions

do not contain an A.
– E2

L(π): those excursions whose preceding and/or subsequent non-positive excursions
contain an A.

The total number of non-positive excursions containing an A is bounded from above
by εµαL . Since a non-positive excursion can be at most once preceding and once sub-
sequent, we have |E1

L(π)| ≥ (s/M − 2ε)µαL . We will discard the excursions in E2
L(π).

Morover, to avoid overlap, we will keep from E1
L(π) only half of the excursions. Call

the remainder Ẽ1
L(π), and abbreviate r̃L(π) = |Ẽ1

L(π)|. Then r̃L(π) ≥ rµαL with
r = (s/2M − ε)µαL .

Next, for π ∈ Bε,L , let χ(π) denote the partition of {1, . . . , µαL} into 2r̃L(π) +

1 intervals, i.e., (It )
2r̃L
t=0 with I2( j−1)+1 , j ∈ {1, 2, . . . , r̃L}, the interval occupied by

the jth excursion of Ẽ1
L(π) and its preceding and subsequent non-positive excursions.

The partition χ(π) also contains 2r̃L + 1 integers (it )
2r̃L
t=0 with it , i ∈ {0, 1, . . . , 2r̃L}, the

number of horizontal steps the path π makes in It .
Let Kω

L be the set of possible outcomes of χ(π) as π runs over Bε,L . For χ ∈ Kω
L , let

t (χ) denote the family of possible paths over the even intervals I0, I2, . . . , I2r̃(χ). The
paths of t (χ) do not put more than εµαL monomers of type A on or below the interface,
put exactly one excursion of type 1 in each interval I2 j , j ∈ {1, . . . , 2r̃(χ)}, no excursion
of type 1 in I0 and at most one excursion in I2r̃(χ). For j ∈ {1, . . . , r̃(χ)}, let t j (χ) be
the set of paths on I2 j−1 that make i2 j−1 horizontal steps, perform exactly one excursion
of type 1, and have their preceding and subsequent non-positive excursions without an
A. Then we have the formula

P
ω,I
µαL

(
Bε,L

) =
∑
χ∈Kω

L

[(∑
π ′∈t (χ) e−Hω,I (π ′)

) ∏r̃(χ)
j=1

(∑
π j ∈t j (χ)

e−Hω,I (π j )
)]

∑
π∈Wµα L ,L

e−Hω,I (π)
.

(3.2.9)

Step 5. For j ∈ {1, . . . , r̃(χ)}, let s j (χ) be the set of non-positive excursions of |I2 j−1|
steps of which i2 j−1 are horizontal. Then we may estimate
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P
ω,I
µα L

(
Bε,L

) ≤ εµαL

(
µαL

εµαL

)

×
∑
χ∈KωL

[(∑
π ′∈t (χ) e−Hω,I (π ′)

) ∏r̃(χ)
j=1

(∑
π j ∈t j (χ)

e
−Hω,I (π j )

)]

∑
χ∈KωL

[(∑
π ′∈t (χ) e−Hω,I (π ′)) ∏r̃(χ)

j=1

(∑
π j ∈t j (χ)

e
−Hω,I (π j ) +

∑
π j ∈s j (χ)

e
−Hω,I (π j )

)] .

(3.2.10)

Here, the prefactor comes from the fact that a path with more than one non-positive
excursion containing an A may be associated with more than one family (χ, t (χ)) in the
sum in the denominator of (3.2.9). However, a path t (χ) cannot have more than εµαL
excursions of such type. Since the number of excursions is bounded from above byµαL ,
we can assert that each path can appear at most εµαL

(
µαL
εµαL

)
times in the denominator.

At this stage it suffices to show that there exists a C > 0, depending only on α, α′
and M , such that for all χ ∈ Kω

L and j ∈ {1, . . . , r̃(χ)},
∑

π j ∈s j (χ)

e−Hω,I (π j ) ≥ C
∑

π j ∈t j (χ)

e−Hω,I (π j ). (3.2.11)

Indeed, since r ≥ µαL this yields, via (3.2.10),

P
ω,I
µαL

(
Bε,L

) ≤ εµαL

(
µαL

εµαL

)
(1 + C)−rµαL . (3.2.12)

For ε small enough the r.h.s. of (3.2.12) tends to zero as L → ∞ because C > 0,
implying (3.2.7) as desired.
Step 6. To prove (3.2.12), we note that, since the paths of s j (χ) stay in the lower halfplane,
their Hamiltonian is a constant, namely, Hω,I(s j (χ)) =∑i∈I j

(α1{ωi = A}−β1{ωi =
B}) (recall (2.4.2)). A path of t j (χ) puts at most M steps of I j in the upper halfplane,
and so π j ∈ t j (χ) implies Hω,I(π j ) ≥ Hω,I(s j (χ)) − αM . It therefore remains to
compare the cardinalities of s j (χ) and t j (χ). The number of strictly positive excursions
of length ≤ M is some integer, denoted by �(M). Moreover, on I j the possible starting
points of the excursion of type 1 are at most M . Indeed, the excursion has to contain all
the ωi of I j that are equal to A, and hence it must start less than M steps to the left of the
leftmost i ∈ I j such that ωi = A. Thus, we have at most M�(M) possible excursions of
type 1 in I j (if we take into account their starting point). Next, we note that by fixing the
starting point and the shape of the excursions of type 1, we can create an injection from
t j (χ) to s j (χ) as follows (see Fig. 9). If 2r is the number of vertical steps in the fixed
excursion of type 1, then we associate with each path of t j (χ) a path of s j (χ) that begins
with r vertical steps down before performing the preceding non-positive excursion, next
makes s horizontal steps, where s is the number of horizontal steps in the excursion of
type 1, next performs the subsequent non-positive excursion, and afterwards returns to
the interface with r vertical steps.

We conclude that |s j (χ)| ≥ |t j (χ)|/Mh(M), which allows us to estimate
∑

π j ∈s j (χ)

e−Hω,I (π j ) = |s j (χ)| e−Hω,I (s j (χ))

≥ |t j (χ)|
M�(M)

e−Hω,I (s j (χ)) = C
∑

π j ∈t j (χ)

e−Hω,I (π j ) (3.2.13)

with C = e−αM/Mh(M), proving (3.2.11).
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Fig. 9. Injection from t j (χ) to s j (χ). Here, (b1, b2) and (d1, d2) label the endpoints of the preceding and
subsequent non-positive excursions

4. Proof of Theorem 1.4.2

Section 4.1 states two propositions providing the lower, respectively, upper bound for
f near the critical curve. These two propositions are proved in Sects. 4.3 and 4.4,
respectively, and together yield Theorem 1.4.2. Section 4.2 contains several lemmas
about the maximisers of the variational problem for ψAB , which are needed in the
proofs.

4.1. Lower and upper bounds on the free energy. Recall (2.4.2). Fix p ≥ pc,
α ∈ (α∗,∞) and δ0 > 0 small enough (depending on p and α). Abbreviate
I0 = (0, δ0] ∩ (0, α − βc(α)], and for δ ∈ I0 define

ψkl(a, δ) = ψkl(α, βc(α) + δ; a), a ≥ 2,
(4.1.1)

φI(µ, δ) = φI(α, βc(α) + δ;µ), µ ≥ 1,

and

Tα(δ) = f (α, βc(α) + δ; p)− f (α, βc(α); p). (4.1.2)

Proposition 4.1.1. There exists a C1 > 0 such that

Tα(δ) ≥ C1δ
2 ∀ δ ∈ I0. (4.1.3)

Proposition 4.1.2. There exists a C2 < ∞ such that

Tα(δ) ≤ C2δ
2 ∀ δ ∈ I0. (4.1.4)

4.2. Maximisers of the block pair free energy. Lemmas 4.2.1–4.2.6 below are elemen-
tary assertions about the existence and the limiting behaviour of the maximisers in the
variational expression for ψAB in (2.3.6). These lemmas will be needed in the proof of
Propositions 4.1.1–4.1.2 in Sects. 4.3–4.4.
Step 1. We first show that a �→ ψAB(a, δ) has a maximiser for δ small enough.

Lemma 4.2.1. For every δ0 > 0 there exists an a0 > 2 such that, for every α > α∗ and
δ ∈ I0(α), there exists an aα(δ) ∈ (2, a0] satisfying

sup
a≥2

ψAB(a, δ) = ψAB(aα(δ), δ). (4.2.1)
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Proof. Recall (4.1.1). In Lemma 2.4.1 we showed that, for every β0 > 0, ψAB(a, α, β)
tends to zero as a → ∞ uniformly in α ≥ β and β ≤ β0. Since βc(α) ≤ β∗ for all
α ≥ 0, there therefore exists an a0 > 2 such that ψAB(a, δ) < κ(a∗, 1) for all a ≥ a0,
α > α∗ and δ ∈ I0(α). By [7], Theorem 1.4.2, we have supa≥2 ψA,B(a, δ) > κ(a∗, 1)
for all δ > 0 and α > α∗. This implies

sup
a≥2

ψAB(a, δ) = sup
2≤a≤a0

ψAB(a, δ) ∀α > α∗, δ ∈ I0(α). (4.2.2)

For δ fixed, a �→ ψAB(a, δ) is continuous on [2,∞) and ψAB(2, δ) = 0. Therefore
there exists an aα(δ) ∈ (2, a0] such that the l.h.s. of (4.2.2) is equal to ψA,B(aα(δ), δ).

��
Step 2. Let

Qα
δ,µ0

= {(c, µ) : 0 ≤ c ≤ µ, µ ≥ µ0, aα(δ)− c ≥ 2 − c/µ} (4.2.3)

and

H(c, a, µ, δ) = 1

a

[
cφI(µ, δ) + (a − c)κ(a − c, 1 − c/µ)

]
. (4.2.4)

Then, by Lemma 2.2.1(ii), we can assert that there exists a unique pair (cα(δ), µα(δ))∈
Qα
δ,1 satisfying ψAB(aα(δ), δ) = H(cα(δ), aα(δ), µα(δ), δ).

Lemma 4.2.2. For every δ0 > 0 there exists a µ0 > 1 such that (cα(δ), µα(δ))∈
Qα
δ,1\Qα

δ,µ0
for all α > α∗ and δ ∈ I0(α).

Proof. Prior to (4.2.2) we noted thatψAB(aα(δ), δ) > κ(a∗, 1). We will show that there
exists a µ0 > 1 such that H(c, aα(δ), µ, δ) ≤ κ(a∗, 1) for all α > α∗, δ ∈ I0(α) and
(c, µ) ∈ Qα

δ,µ0
. This goes as follows. In Lemma 2.4.1(i) we showed that φI(µ, δ) tends

to zero as µ → ∞, uniformly in α > α∗ and δ ∈ I0(α). Therefore there exists a µ0 > 1
such that φI(µ, δ) < 1

2κ(a
∗, 1) for all µ ≥ µ0, α > α∗ and δ ∈ I0(α).

Lemma 4.2.3. There exists an M > 0, depending on a0, such that κ(a, b) ≤ κ(a∗, 1) +
M(1 − b) for all (a, b) ∈ DOM (recall (2.2.1)) satisfying a ≤ a0 and 1

2 ≤ b ≤ 1.

Proof. This is easily proved via Lemma 2.2.1(ii), which says that (a, b) �→ κ(a, b) is
analytic on the interior of DOM, and the equality κ(a, a − 1) = 0 for all a ≥ 2. ��
We now choose µ0 large enough so that µ > 2a0 and Ma0/µ ≤ 1

2κ(a
∗, 1). Thus, for

(c, µ) ∈ Qα
δ,µ0

we have c/µ ≤ a0/µ0 ≤ 1
2 , which entails 1

2 ≤ 1 − c/µ ≤ 1. Therefore,
(aα(δ)− c, 1 − c/µ) satisfies the assumptions of Lemma 4.2.3 and

H(c, aα(δ), µ, δ) ≤ 1

aα(δ)

[
c 1

2κ(a
∗, 1) + (aα(δ)− c)

(
κ(a∗, 1) + Mc/µ

)]

≤ κ(a∗, 1) +
1

aα(δ)
c
[
Ma0/µ− 1

2κ(a
∗, 1)

] ≤ κ(a∗, 1). (4.2.5)

��
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Step 3. We next show that a �→ ψAB(a, 0) has a unique maximiser.

Lemma 4.2.4. For every α ≥ α∗, supa≥2 ψAB(a, 0) = κ(a∗, 1) and is achieved
uniquely at a = a∗. Consequently, for α ≥ α∗ and β = βc(α), the supremum in
(2.3.6) is achieved uniquely at c = 0.

Proof. Since (α, βc(α)) ∈ L, [7], Theorem 1.4.2, tells us that supa≥2 ψAB(a, 0) ≤
κ(a∗, 1). Moreover, ψAB(a∗, 0) ≥ κ(a∗, 1), and therefore

sup
a≥2

ψAB(a, 0) = κ(a∗, 1) = ψAB(a
∗, 0). (4.2.6)

Now, pick a ≥ 2 such thatψAB(a, 0) = κ(a∗, 1) and recall that DOM(a) in (2.3.4) is the
domain of the variational problem for ψAB(a, 0). We argue by contradiction. Suppose
that there exist c, b > 0 such that (c, b) ∈ DOM(a) and

ψAB(a, 0) = κ(a∗, 1) = 1

a

[
cφI(c/b, 0) + (a − c)κ(a − c, 1 − b)

]
. (4.2.7)

Then

1

a

{
(c/b)

[
φI(c/b, 0)− κ(a∗, 1)

]− (a/b − c/b)
[
κ(a∗, 1)− κ(a − c, 1 − b)

]} = 0.

(4.2.8)

However, (c/b) [φI(c/b, 0) − κ(a∗, 1)] ≤ ς by Proposition 2.3.4. Moreover, by [7],
Eq. (2.3.3), we have

g(ν) = ν

[
κ(a∗, 1)− sup

2/(ν+1)≤b≤1
κ(bν, 1 − b)

]
> ς ∀ ν ≥ 1. (4.2.9)

Pick ν = (a − c)/b to make the l.h.s. of (4.2.8) strictly negative. Then the equality in
(4.2.8) cannot occur with b > 0 and c > 0. Consequently, the only way to obtain (4.2.8)
is to take c = 0 and a = a∗. ��
Step 4. Fix α > α∗ and δ0 > 0. For δ ∈ I0(α), the quantity aα(δ) may not be unique,
which is why from now on we take its minimum value. We next prove that (aα(δ), cα(δ))
tends to (a∗, 0) as δ ↓ 0. In what follows, (δn)n∈N is a sequence in I0(α) such that
limn→∞ δn = 0.

Lemma 4.2.5. Let (an)n∈N and (µn)n∈N be such that limn→∞ an = a ≥ 2 and
limn→∞ µn = µ ≥ 1. Then limn→∞ ψAB(an, δn) = ψA,B(a, 0) and limn→∞ φI

(µn, δn) = φI(µ, 0).

Proof. A simple computation gives thatψAB(a, δ)−ψAB(a, 0) ≤ δ for all a ≥ 2 (recall
(4.1.1)). This allows us to write the inequality

|ψAB(an, δn)−ψAB(a, 0)| = |ψAB(an, δn)−ψAB(an, 0)|+|ψAB(an, 0)−ψAB(a, 0)|
≤ δn + |ψAB(an, 0)− ψAB(a, 0)|. (4.2.10)

Since a �→ ψA,B(a, 0) is continuous (recall Lemma 2.3.3(i)), the r.h.s. of (4.2.10) tends
to zero as n → ∞. This yields the claim for ψAB . The same proof gives the claim for
φI . ��
Step 5. Finally, we obtain the convergence of aα(δ) and cα(δ) as δ ↓ 0.
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Lemma 4.2.6. (i) limδ↓0 aα(δ) = a∗.
(ii) limδ↓0 cα(δ) = 0.

Proof. (i) The family (aα(δ))δ∈I0(α) is bounded. We show that the only possible limit
of its subsequences is a∗. Assume that aδn → a∞ as n → ∞, with a∞ ∈ [2, a0].
Since δ �→ ψA,B(aα(δ), δ) is non-decreasing, we get

ψAB(aδn , δn)− ψAB(a
∗, 0) ≥ 0. (4.2.11)

Lemma 4.2.5 tells us that the r.h.s. of (4.2.11) tends toψAB(a∞, 0)−ψAB(a∗, 0) as
n → ∞. Thus, ψAB(a∞, 0) ≥ ψAB(a∗, 0) and, since a∗ is the unique maximiser
ofψA,B(a, 0) (by Lemma 4.2.4), we obtain that a∞ = a∗. This implies that aα(δ)
tends to a∗ as δ ↓ 0.

(ii) The family (cα(δ))δ∈I0 is bounded, because cα(δ) ≤ aα(δ) − 1 ≤ a0 − 1 for
every δ ∈ I0. Assume that cα(δn) → c∞ as n → ∞. Since aα(δn) → a∗, we
necessarily have c∞ ≤ a∗−1. Moreover, (µα(δn))n∈N is bounded above byµ0 (by
Lemma 4.2.2). Therefore, we can pick a subsequence satisfying µα(δn) → µ∞
as n → ∞. We now recall (4.2.4) and write

ψAB(aα(δn), δn) = 1

aα(δn)
cα(δn)φ

I(µα(δn), δn)

+
1

aα(δn)

[(
aδn −cα(δn)

)
κ (aα(δ)−cα(δn), 1 − cα(δn)/µ)

]
.

(4.2.12)

Let n → ∞. Then Lemma 4.2.5 tells us that

ψAB(a
∗, 0) = 1

a∗
[
c∞φI(µ∞, 0) + (a∗ − c∞) κ

(
a∗ − c∞, 1 − c∞/µ∞

)]
.

(4.2.13)

Therefore Lemma 4.2.4 gives that c∞ = 0 and consequently cα(δ) tends to 0 as
δ ↓ 0.

��

4.3. Proof of Proposition 4.1.1.

Proof. Along the way we need the following. Let ∂φI/∂β+ and ∂φI/∂β− denote the
right- and left-derivative of φI , respectively.

Lemma 4.3.1. For all µ ≥ 1 and α, β ≥ 0 such that φI(α, β;µ) > κ̂(µ),

∂φI

∂β+ (α, β;µ) ≥ ∂φI

∂β− (α, β;µ) > 0. (4.3.1)

Proof. Use that φI(α, β;µ) is convex in β and that φI(α, β;µ) ≥ φI(α, 0;µ) = κ̂(µ)

for all β ≥ 0. ��
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What Lemma 4.3.1 says is that the localized phase ofφI(α, β;µ) for fixedµ corresponds
to pairs (α, β) satisfying φI(α, β;µ) > κ̂(µ).
Step 1. Recall (2.1.8) and pick a γ ∈ (0, 1) for which Mγ ∈ R(p). By picking
aAA = aAB = a∗ = 5

2 and (ρkl) = Mγ in (2.1.11), and noting that ψAA(a∗) =
f (α, βc(α); p) = κ(a∗, 1) = � , we get

Tα(δ) ≥ γ
[
ψAB(a

∗, δ)− κ(a∗, 1)
]
. (4.3.2)

Since µ �→ φI(µ, 0) is continuous and φI(1, 0) = 0, Proposition 2.3.4 allows us to
choose a µα ≥ 1 that is a solution of the equation φI(µ, 0) = � + (1/µ)ς (recall
(3.1.2)). Pick C ∈ (0, 1) and, in the variational formula for ψAB(a∗, δ) in Lemma 2.3.2,
pick c = Cδ and c/b = µα , to obtain the lower bound

Tα(δ) ≥ γ

a∗
[
CδφI(µα, δ) + (a∗ − Cδ)κ

(
a∗ − Cδ, 1 − Cδ/µα

)− a∗κ(a∗, 1)
]
.

(4.3.3)

Use Lemma 2.2.1(iv–vi) to Taylor expand

κ
(
a∗ − Cδ, 1 − Cδ/µα

) = κ(a∗, 1)− (ς/a∗)Cδ/µα + BαC2δ2

+ζ (Cδ,Cδ/µ) C2δ2
(

1 + 1/µ2
α

)
, δ ↓ 0, (4.3.4)

for some Bα ∈ R and ζ a function on R
2 tending to zero at (0, 0). Since βc(α) ≤ β∗ for

α ≥ α∗, Lemma 2.4.1 tells us that φI(α, βc(α);µ) tends to 0 as µ → ∞ uniformly in
α ≥ α∗. Consequently, µα is bounded uniformly in α ≥ α∗, and therefore so is Bα . By
inserting (4.3.4) into (4.3.3), we obtain that there exist M ∈ R and δ0 > 0 such that

Tα(δ) ≥ γ

a∗
[
Cδ
{
φI(µα, δ)− φI(µα, 0)

}
+ Ma∗C2δ2

]
∀α > α∗, δ ∈ I0(α).

(4.3.5)

Since, by Lemma 2.2.2(iv) and Proposition 2.3.4, φI(µα, 0) > κ̂(µα), Lemma 4.3.1
gives that (α, βc(α)) lies in the localized phase of (α′, β ′) → φI(µα, α′, β ′). Therefore

φI(µα, δ)− φI(µα, 0) ≥ C ′
αδ with C ′

α = ∂φI

∂β+ (α, βc(α);µα) ∈ (0, 1]. (4.3.6)

Hence (4.3.5) becomes

Tα(δ) ≥ γ

a∗ (CC ′
α + Ma∗C2) δ2 ∀α > α∗, δ ∈ I0(α). (4.3.7)

Now pick C small enough so that Ma∗C > − 1
2 C ′

α , to get the inequality in (4.1.3) with
C1 = γ

2a∗ CC ′
α .

Step 2. To complete the proof of Proposition 4.1.1 it suffices to show that C ′
α can

be bounded from below by a strictly positive constant. The latter is done as follows.
Suppose that there exists a sequence (αn)n∈N in (α∗,∞] such that limn→∞ C ′

αn
= 0.

By considering a subsequence of (αn)n∈N, we may assume that αn and µαn converge,
respectively, to α∞ ∈ [α∗,∞] and µ∞. Moreover, as proved in Lemma 4.2.5,

lim
n→∞φ

I(αn, β, µαn ) = φI(α∞, β, µ∞) ∀β > 0, (4.3.8)
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and β �→ φI(αn, β;µαn ) is convex for every n ∈ N. Consequently,

∂φI

∂β− (α∞, βc(α∞);µ∞) ≤ lim sup
n→∞

∂φI

∂β+ (αn, βc(αn);µαn ) = lim sup
n→∞

C ′
αn

= 0

(4.3.9)

and

φI(α∞, β;µ∞) = � +
1

µ∞
ς > κ̂(µ∞). (4.3.10)

But (4.3.9) yields ∂φI
∂β− (α∞, βc(α∞);µ∞) ≤ 0, which contradicts the statement in

Lemma 4.2.5, because of (4.3.10). ��

4.4. Proof of Proposition 4.1.2. Step 1. Since ψAB ≥ ψkl for all kl ∈ {A, B}2, we can
write

f (α, βc(α) + δ; p)− f (α, βc(α); p) ≤ ψAB(aα(δ), δ)−�. (4.4.1)

Because of Lemma 4.2.4 we also have

f (α, βc(α) + δ; p)− f (α, βc(α); p) ≤ ψAB(aα(δ), δ)− ψAB(aα(δ), 0). (4.4.2)

Since

ψAB(aα(δ), δ)− ψAB(aα(δ), 0)

≤ 1

aα(δ)

{
cα(δ)

[
φI (µα(δ), α, βc(α) + δ)− φI (µα(δ), α, βc(α))

]}
(4.4.3)

and, for δ fixed, β �→ φI(α, β;µα(δ)) is convex with slope bounded by 1, we obtain

ψAB(aα(δ), δ)− ψAB(aα(δ), 0) ≤ 1

a0

[(
∂

∂β
φI
)
(α, βc(α) + δ;µα(δ))

]
cα(δ) δ

≤ 1

a0
cα(δ) δ. (4.4.4)

Step 2. The proof of (4.1.4) is now completed by the following.

Lemma 4.4.1. For every α > α∗ there exist Cα < ∞ and δ0 > 0 such that cα(δ) ≤ Cαδ
for all δ ∈ I0(α).

Proof. Recall the statement of Lemma 4.2.2, i.e., for every δ ∈ I0(α) there exists a
µα(δ) ∈ [1, µ0] such that

ψAB(aα(δ), δ) = sup
c≤min{aα(δ)−1,µα(δ)(aα(δ)−2)/(µα(δ)−1)}

H(c, aα(δ), µα(δ), δ) (4.4.5)

with

H(c, aα(δ), µα(δ), δ) = 1

aα(δ)

[
cφI(µα(δ), δ) + (aα(δ)− c)κ (aα(δ)− c, 1 − c/µα(δ))

]
.

(4.4.6)
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We proved in Lemma 4.2.6 that the supremum is attained in a point cα(δ) > 0 that tends
to zero as δ ↓ 0. Since H is differentiable w.r.t. its first variable, we have

∂H

∂1
(cα(δ), aα(δ), µα(δ), δ) = 0. (4.4.7)

Moreover, since H is also differentiable w.r.t. its second variable, and since the maximum
of ψAB(a, δ) over a ∈ [2,∞) is attained in aα(δ), we have

∂H

∂2
(cα(δ), aα(δ), µα(δ), δ) = 0. (4.4.8)

In what follows, we consider three functions (δ �→ ξi,α(δ))i=1,2,3 that tend to zero as
δ ↓ 0. Since aα(δ) tends to a∗ by Lemma 4.2.6(i), we use the notation aα(δ) = a∗+âα(δ).
For simplicity, when we do not indicate the point at which a derivative is taken, this point
is (a∗, 1) by default.

Computing the derivative in (4.4.7) from (4.4.6), we obtain a relation between cα(δ)
and aα(δ). We may simplify this relation by using a first order Taylor expansion of the
quantities

κ (aα(δ), 1 − cα(δ)/µα(δ)) ,
∂κ

∂2
(aα(δ), 1 − cα(δ)/µα(δ)) ,

(4.4.9)
∂κ

∂2
(aα(δ), 1 − cα(δ)/µα(δ)) ,

in the neighbourhood of (a∗, 1). This gives, after some straightforward but tedious
computations,

[
φI(µα(δ), δ)− κ(a∗, 1)− 5

2µα(δ)
∂K
∂2

]

+cα(δ) Aα,δ + âα(δ) Bα,δ + ξ1,α(δ) (|cα(δ)| + |âα(δ)|) = 0 (4.4.10)

with

Aα,δ = 1
µα(δ)

[
2 ∂κ
∂2 + 5 ∂2κ

∂1∂2 + 5
2µα(δ)

∂2κ
∂22 + 5µα(δ)

2
∂2κ
∂22

]
,

(4.4.11)
Bα,δ = − 1

µα(δ)

[
∂κ
∂2 + 5

2
∂2κ
∂1∂2 + 5µα(δ)

2
∂2κ
∂12

]
.

The same type of computation applied to (4.4.8) gives

âα(δ) + ξ2,α(δ)âα(δ) = cα(δ)Cα,δ + ξ3,α(δ)cα(δ) (4.4.12)

with

Cα,δ = −( 2
5 )

2 κ(a∗,1)−φI (µα(δ),δ)
∂2κ
∂12

+ 1 +
∂κ2
∂1∂2

µα(δ)
∂2κ
∂12

. (4.4.13)

Recalling that cα(δ) and âα(δ) tend to zero as δ ↓ 0 (by Lemma 4.2.6), we obtain
from (4.4.12) that âα(δ) ∈ [(Cα,δ − ε)cα(δ), (Cα,δ + ε)cα(δ)] for all ε > 0 and δ small
enough. From this last inclusion and (4.4.10), we get that there exists a δ1 > 0 such that,
for all ε > 0 and δ ≤ δ1,
[
φI(µα(δ), δ)− κ(a∗, 1)− 5

2µα(δ)
∂K
∂2

]
+ cα(δ)

(
Aα,δ + Bα,δCα,δ + ε

) ≥ 0. (4.4.14)
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Abbreviate

�(δ) = φI(µα(δ), δ)− κ(a∗, 1)− 5
2µα(δ)

∂K
∂2 . (4.4.15)

Since (α, βc(α)) lies in the delocalized region, Proposition 2.3.4 tells us that
φI(µα(δ), 0) ≤ κ(a∗, 1) + 5

2µα(δ)
∂K
∂2 . Therefore we can write

�(δ) ≤ φI(µα(δ), δ)− φI(µα(δ), 0). (4.4.16)

A simple computation gives that φI(µ, δ)−φI(µ, 0) ≤ δ for all µ ≥ 1 (recall (4.1.1)).
Hence �(δ) ≤ δ.

From (4.4.11) and (4.4.13), we have

Aα,δ + Bα,δCα,δ = A
µα(δ)2

+�(δ)
[

B
µα(δ)

− 2
5

]
(4.4.17)

with

A = 1
∂2κ
∂12

[
5
2
∂2κ
∂22 − 2

5

(
∂κ
∂2

)2 − 2 ∂κ
∂2

∂2κ
∂1∂2 − 5

2

(
∂2κ
∂1∂2

)2
]

and

(4.4.18)
B = 1

∂2κ
∂12

[
− ( 2

5

)2 ∂κ
∂2 − 2

5
∂2κ
∂1∂2

]
.

By inserting the values of the derivatives given in Lemma 2.2.1(v–vi), we find that
A < 0. Thus, recalling that 1 ≤ µα(δ) ≤ µ0 for all δ ∈ I0(α) (by Lemma 4.2.2), we
can rewrite (4.4.14) as

Aα,δ + Bα,δCα,δ ≤ A
µ2

0
+�(δ)

[|B| + 2
5

]
. (4.4.19)

Since �(δ) ≤ δ, we can now assert that there exists a δ2 > 0 such that 0 < δ ≤ δ2
implies Aα,δ + Bα,δCα,δ ≤ 3A/2µ2

0. Therefore (4.4.14) becomes δ + cα(δ) 3A/2µ2
0 ≥ 0

and, consequently, for δ0 = min{δ1, δ2} there exists a Cα > 0 such that for all δ ∈ I0(α),

cα(δ) ≤ Cαδ. (4.4.20)

This completes the proof of Lemma 4.4.1. ��

5. Proof of Theorem 1.4.3

In Sect. 5.1 we study a variation of the single linear interface model in which the variable
µ is replaced by a dual variable λ, which enters into the Hamiltonian rather than in the
set of paths. We show that the free energy for this dual model is smooth. In Sect. 5.2 we
show that the dual free energy has a non-zero curvature. In Sects. 5.3 and 5.4 we use
this to prove that φI and ψAB are smooth on their localized phases and have a non-zero
curvature too. The latter in turn are used in Sect. 5.5 to prove the smoothness of f on L.
Key ingredients in the proofs are the implicit function theorem, the exponential tightness
of the excursions in the localized phases, and the uniqueness of the maximisers in the
variational formulas for φI , ψAB and f .
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5.1. Fenchel-Legendre transform of φI . We begin by defining the dual of the single
interface model. Let WL be the set of L-step directed self-avoiding paths that start at
(0, 0) and end at (x, 0) for some x ∈ {1, . . . , L}. For π ∈ WL , let h(π) be the number
of horizontal steps in π . For λ ≥ 0, define (recall (2.4.2))

Uω,I
L (α, β; λ) =

∑

π∈WL

e−λh(π)−Hω,I
L (π)

(5.1.1)

uI(α, β; λ) = lim
L→∞

1

L
log Uω,I

L (α, β; λ) ω − a.s.

and

κ̃(λ) = lim
L→∞

1

L
log

∑

π∈WL

e−λh(π). (5.1.2)

The convergence ω-a.s. and in mean and the constantness ω-a.s. of uI(α, β; λ) follow
from the subadditive ergodic theorem (Kingman [8]). Set

Lu =
{
(α, β, λ) = CONE × [0,∞) : uI(α, β; λ) > κ̃(λ)

}
, (5.1.3)

i.e., the region where the dual of the single linear interface model is localized.

Proposition 5.1.1. The function (α, β, λ) �→ uI(α, β; λ) is infinitely differentiable on
Lu.

Proof. The proof is similar to that of the infinite differentiability of the free energy for
the single interface model, proved in Giacomin and Toninelli [6]. Therefore, we only
sketch the main steps in the proof and refer to [6] for further details.
Step 1. The claim follows from the Arzela-Ascoli theorem as soon as we prove that for
all (α0, β0, λ0) ∈ Lu there exists V ⊂ Lu a neighborhood of (α0, β0, λ0) such that for all
k ∈ N, the kth derivative of L−1

E(log Uω,I
L (α, β; λ))w.r.t. any of the parameters α, β, λ

is bounded uniformly in L and (α, β, λ) ∈ V , where E denotes expectation w.r.t. ω.
For a, b ∈ N with a < b, let Ha,b be the set of bounded functions that are measurable

w.r.t. the σ -algebra σ(π j : j ∈ {a, . . . , b}). As explained in [6], the conditions of the
Arzela-Ascoli theorem are satisfied once we show that for all (α0, β0, λ0) ∈ Lu there
exist C1,C2 > 0 and V ⊂ Lu such that, for all a1, b1, a2, b2 ∈ N with a1 < b1 < a2 <

b2 ≤ L and ( f1, f2) ∈ Ha1,b1 × Ha2,b2 and (α, β, λ) ∈ V , the following inequality
holds:

E

(
Eω,IL ( f1 f2)− Eω,IL ( f1)E

ω,I
L ( f2)

)
≤ C1 ‖ f1‖∞ ‖ f2‖∞ e−C2(a2−b1). (5.1.4)

Here, Eω,IL is expectation w.r.t. the law of the L-step copolymer at fixed ω given by
(recall (5.1.1))

Pω,IL (π) = 1

Uω,I
L

e−λh(π)−Hω,I
L (π). (5.1.5)



856 F. den Hollander, N. Pétrélis

Next, the correlation inequality in (5.1.4) will follow once we show that there exist
C1,C2 > 0 and V ⊂ Lu (depending on α0, β0, λ0) such that, for all a, b, L ∈ N with
a ≤ b ≤ L , we have

E

(
[Pω,IL ]⊗2(Ba,b)

)
≤ C1e−C2(b−a), (5.1.6)

where [Pω,IL ]⊗2 is the joint law of two independent copies of the L-step copolymer at
fixed ω, and

Ba,b = {(π1, π2) : � j ∈ {a, . . . , b} such that the jth steps

of π1 and π2 are the same and occur at the same height}. (5.1.7)

Indeed, on [Ba,b]c the two paths can be coupled as soon as they make the common step.
An example of a pair of paths (π1, π2) not in Ba,b is displayed in Fig. 10.
Step 2. For i = 1, 2 and M ∈ N, let li,M be the number of excursions of πi (either strictly
positive or non-positive) that are included in {a, . . . , b} and are smaller than or equal to
M . Let

EM (πi ) = {(bi
1, ei

1), . . . , (b
i
li,M , ei

li,M )}, (5.1.8)

where (bi
j , ei

j ) denote the end-steps of the jth excursion. Put τ i
j = ei

j − bi
j + 1, and for

γ ∈ (0, 1) let

Ai,γ,M =
⎧
⎨

⎩πi :
li,M∑

j=1

τ i
j ≥ γ (b − a)

⎫
⎬

⎭ . (5.1.9)

Lemma 5.1.2. (i) For all γ0 ∈ (0, 1) and (α0, β0, λ0) ∈ Lu there exist M ∈ N,
an open neighborhood V of (α0, β0, λ0) in Lu and C1,C2 > 0 such that, for
L ≥ b ≥ a and (α, β, λ) ∈ V ,

E

(
P
ω,I
L (Ai,γ0,M )

)
≥ 1 − C1e−C2(b−a), i = 1, 2.

(ii) For all T0 ∈ N and (α0, β0, λ0) ∈ Lu there exist γ ∈ (0, 1), an open neighbo-
rhood V of (α0, β0, λ0) in Lu and C1,C2 > 0 such that, for all L ≥ b ≥ a and
(α, β, λ) ∈ V ,

E

(
P
ω,I
L (Ai,γ,T0)

)
≤ C1e−C2(b−a), i = 1, 2.

Fig. 10. A pair of paths (π1, π2) whose jth steps are the same and occur at the same height
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Proof. (i) This part gives the exponential tightness of the excursions of the copolymer
in the localized phase. Compared to Proposition 3.1.1, both the model and the
statement are different. However, the same tools can be used and for this reason
we only give a sketch of the proof. By the definition of Ac

i,γ0,M
, there are two cases.

Case 1. The sum of the lengths of the strictly positive excursions larger than M
in {a, . . . , b} is ≥ γ b−a

2 .
Case 2. The sum of the lengths of the non-positive excursions larger than M in
{a, . . . , b} is ≥ γ b−a

2 .
In Case 1, by concatenating the strictly positive excursions larger than M in
{a, . . . , b}, we can bound the total entropy carried by these excursions (i.e., the
logarithm of their total cardinality) from above by the entropy of a large single
positive excursion whose length is equal to the sum of the lengths of the excur-
sions larger than M , which is at least γ b−a

2 . This provides an upper bound for
the analogue of the sum in (3.1.14). Next, the gain in the free energy obtained by
replacing the large single positive excursion by a path with the same endpoints
but no positivity constraint is, for b − a large enough, of order exp[C2(b − a)],
with C2 = γ

2 [u(λ) − κ̃(λ)]. This provides a lower bound for the normalizing
partition sum in (3.1.14). By choosing a small enough open neighborhood V of
(α0, β0, λ0) in Lu , we get that there exists a c > 0 such that, for all (α, β, λ) ∈ V ,
we have u(α, β; λ)− κ̃(λ) ≥ c. Thus, cγ

2 is a lower bound for C2, uniform in V .
In Case 2, a similar argument applies.

(ii) Again we only sketch the proof. We partition {a, . . . , b} into b−a
R blocks of size R.

A block is called “good” if it carries only monomers of type A. By the law of large
numbers, there exists a cR > 0 such that approximately cR(b − a) of the blocks
are good. We can therefore choose γ close enough to 1 such that, on A1,γ,T , at
least cR

2 (b − a) of the good blocks are covered only by excursions smaller than
T . Such blocks are called “good T -blocks”. Consequently, more than R

T excur-
sions are required to cover a good T -block and so at least R

T steps in each good
T -block are below the interface. Thus, after relaxing the condition A1,γ,T in the
normalizing partition sum, we can replace on each good T -block the excursions
smaller than T by a large strictly positive excursion. This does not decrease the
entropy, but increases the energy by at least β R

T on each good T -block. Summed
up these energy increases are of order cR

2 (b − a)β R
T .

��
Step 3. Let D = A1, 3

4 ,M
∩ A2, 3

4 ,M
and TM = {EM (π1) : π1 ∈ A1, 3

4 ,M
}. For i = 1, 2

and EM ∈ TM , let J i (EM ) = {πi : EM (πi ) = EM }. Then Lemma 5.1.2 applied at
γ0 = 3

4 implies that there exists M ∈ N, an open neighborhood V of (α0, β0, λ0) in

Lu and C1,C2 > 0 such that for L ≥ b and (α, β, λ) ∈ V we have [Pω,IL ]⊗2(Dc) ≤
2C1e−C2(b−a), so that it remains to estimate [Pω,IL ]⊗2(Ba,b ∩ D),

[Pω,IL ]⊗2(Ba,b ∩ D)

=
∑

E1
M ,E2

M ∈TM

[Pω,IL ]⊗2
(

Ba,b ∩ {J 1(E1
M )× J 2(E2

M )}
)

=
∑

E1
M ,E2

M ∈TM

Eω,IL

(
1{π2∈J 2(E2

M )} Pω,IL

(
Ba,b ∩ {π1 ∈ J 1(E1

M )} | π2

))
. (5.1.10)
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Next, set ĩ = 2 if i = 1 and vice versa, and define

Ri (E1
M , E2

M ) =
{

j ∈ {1, . . . , li,M } : bĩ
k or eĩ

k ∈ {bi
j , ei

j } for some k ∈ {1, . . . , lĩ,M }
}
.

(5.1.11)

By the definition of Ai, 3
4 ,M

in (5.1.9), for any E1
M , E2

M ∈ TM there are at least 1
4 (b−a)

steps in {a, . . . , b} belonging to excursions smaller than M , in both π1 and π2. The-
refore we can choose a C > 0 small enough such that, for all E1

M , E2
M ∈ TM , either

|Ri (E1
M , E2

M )| ≥ C(b−a)/M or |Rĩ (E1
M , E2

M )| ≥ C(b−a)/M . Without loss of genera-
lity, we may assume that |R1(E1

M , E2
M )| ≥ C(b−a)/M . Because of the condition impo-

sed by Ba,b, for all j ∈ R1(E1
M , E2

M ) the excursion ofπ1 on {b1
j , . . . , e1

j } has some prohi-

bited parts. Indeed, π2 starts or ends an excursion inside {b1
j , . . . , e1

j }, which restricts the
possible excursions ofπ1, becauseπ1 cannot make the same step asπ2 at the same height.
Moreover, there is only a finite number of possibilities to make an excursion smaller than
M and so, for all j ∈ R1(E1

M , E2
M ), relaxing the condition Ba,b on {b1

j , . . . , e1
j } amounts

to increasing the probability in (5.1.10) by a factor Q > 1 depending only on M , i.e.,

Pω,IL

(
Ba,b ∩ {π1 ∈ J 1(E1

M )} | π2

)
≤ Q−|R1(E1

M ,E2
M )| Pω,IL

(
{π1 ∈ J 1(E1

M )}
)
.

(5.1.12)

Therefore, since |R1(E1
M , E2

M )| ≥ C(b − a)/M , (5.1.10) becomes

[Pω,I ]⊗2(Ba,b ∩ D) ≤ e−C b−a
M log Q, (5.1.13)

which proves (5.1.6) and completes the proof of Proposition 5.1.1. ��
The following proposition provides the link between uI and φI .

Proposition 5.1.3. For λ ≥ 0,

uI(λ) = sup
ρ∈(0,1]

{−λρ + φI(1/ρ)}. (5.1.14)

Proof. For ρ ∈ (0, 1], let WL(ρ) = {π ∈ WL : h(π) = ρL} and

Uω,I
L (λ, ρ) =

∑

π∈WL (ρ)

e−λh(π)−Hω,I
L (π). (5.1.15)

By restricting the sum defining Uω,I
L (λ) in (5.1.1) to the set WL(ρ), we obtain uI(λ) ≥

limL→∞ E[L−1 log Uω,I
L (λ, ρ)] = −λρ + φI(1/ρ). Therefore, optimising over ρ, we

get uI(λ) ≥ supρ∈(0,1]{−λρ + φI(1/ρ)}.
To prove the reverse inequality, we note that an analogue of the concentration inequa-

lity (3.1.4) gives that there exists a C > 0 such that, for all L ∈ N, ρ ∈ (0, 1] and ε > 0,

P

(
1

L
log Uω,I

L (λ, ρ) ≥ E

[
1

L
log Uω,I

L (λ, ρ)

]
+ ε

)
≤ C exp[−ε2 L/C(α + β)2].

(5.1.16)
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Next, we define the event

J (L) =
{
∃ j ∈ {1, . . . , L} : 1

L
log Uω,I

L (λ, j/L) ≥ E

[
1

L
log Uω,I

L (λ, j/L)

]
+ ε

}
,

(5.1.17)

and abbreviate E(L) = E[L−1 log Uω,I
L (λ)]. Then we can write

E(L) ≤ E

((
1

L
log Uω,I

L (λ)

)
1J (L)

)
+ E

⎛

⎝ 1

L
log

⎛

⎝
L∑

j=1

Uω,I
L (λ, j/L)

⎞

⎠ 1[J (L)]c

⎞

⎠.

(5.1.18)

Trivially, the quantity L−1 log Uω,I
L (λ) can be bounded from above by α + κ̃(0) (recall

(5.1.2)), uniformly in L and ω. Therefore, with the help of the inequality in (5.1.16),
we see that the first term in the r.h.s. of (5.1.18) is bounded from above by (α +
κ̃(0))C L exp[−ε2L/(C(α + β)2)], which tends to zero as L → ∞. Moreover, for
every j ∈ {1, . . . , L}, a standard subadditivity argument gives that E(L−1 log Uω,I

L
(λ, j/L)) ≤ −λ j/L + φI(L/j). Therefore, on the event [J (L)]c, we have that L−1 log
Uω,I

L (λ, j/L) ≤ −λ j/L +φI(L/j)+ ε for all j ∈ {1, . . . , L}. Thus, the second term in
the r.h.s. of (5.1.18) is bounded from above by (log L)/L +maxρ∈(0,1]{−λρ+φI(1/ρ)}+
ε. Letting L → ∞ and ε ↓ 0, we obtain limL→∞ E1(L) ≤ maxρ∈(0,1]{−λρ+φI(1/ρ)},
which is the reverse inequality we were after. ��

Since ρ �→ φI(1/ρ) is continuous and concave, we can apply the Fenchel-Legendre
duality lemma (see Dembo and Zeitouni [2], Lemma 4.5.8), to obtain

φI(µ) = inf
λ≥0

{λ/µ + uI(λ)}, µ ≥ 1. (5.1.19)

In the same spirit we have

κ̃(λ) = sup
ρ∈(0,1]

{−λρ + κ̂(1/ρ)}, λ ≥ 0,

(5.1.20)
κ̂(µ) = inf

λ≥0
{λ/µ + κ̃(λ)}, µ ≥ 1.

5.2. Positive and finite curvature of uI . In Propositions 5.1.1–5.1.3 we found that uI is
smooth and is the Fenchel-Legendre transform of φI . In Sect. 5.3 we will exploit these
properties to obtain information on φI . To prepare for this, we first need to show the
following. It is immediate from (5.1.1) that λ �→ uI(α, β; λ) is convex. Lemma 5.2.1
and Assumption 5.2.2 below state that it has a strictly positive and finite curvature. To
ease the notation, we suppress α, β from some of the expressions.

Lemma 5.2.1. For all (α, β, λ) ∈ Lu, ∂2uI(α, β; λ)/∂λ2 > 0.
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Proof. It suffices to prove that for all (α, β, λ0) ∈ Lu there exist C, ε > 0 such that, for
all λ ∈ Iε(λ0) = [λ0 − ε, λ0 + ε] and L ≥ 1,

E

(
[Eω,IL ]⊗2

(
[h(π1)− h(π2)]2

))
≥ C L , (5.2.1)

where Eω,IL is the expectation w.r.t. the law in (5.1.5), and λ is suppressed from the
notation.
Step 1. By Lemma 5.1.2(ii), we can assert that for all T0 ∈ N there exist z0 ∈ (0, 1) and
L0 ∈ N such that, for all L ≥ L0 and λ ∈ Iε(λ0),

E

(
Pω,IL

({ lL∑

k=1

τk 1{τk>T0} ≥ z0 L

}))
≥ 3

4
, (5.2.2)

where τk is the length of the kth excursion. Similarly, by Lemma 5.1.2(i), there exists
M0 ∈ N with M0 > T0 and L1 ∈ N such that, for all L ≥ L1 and λ ∈ Iε(λ0),

E

(
Pω,IL

({ lL∑

k=1

τk 1{τk≤M0} ≥
(

1 − z0

2

)
L

}))
≥ 3

4
. (5.2.3)

Abbreviate �0 = {T0 + 1, . . . ,M0} × {−1,+1}. Let ( j, σ ) ∈ �0 and L ≥ L2 =
max{L0, L1}. Define

A(L) =
{ lL∑

k=1

τk1{T0<τk≤M0} ≥ z0

2
L

}
and

B( j,σ )(L) =
{ lL∑

k=1

τk1{τk= j,σk=σ } ≥ z0

4(M0 − T0)
L

}
, (5.2.4)

where σk is the sign of the kth excursion. It follows from (5.2.2–5.2.3) that E(
Pω,IL (A(L))

)
≥ 1

2 and A(L) ⊂ ∪( j,σ )∈�0 B( j,σ )(L). Since |�0| = 2(M0 − t0), for

all L ≥ L2 and λ ∈ Iε(λ0), there exists a ( jL , σL) ∈ �0 such that

E

(
Pω,IL (B( jL ,σL )(L))

)
≥ 1

4(M0 − T0)
. (5.2.5)

Step 2. Henceforth, we abbreviate BL = B( jL ,σL )(L). We will show that the quantity

HL = E

(
[Eω,IL ]⊗2

(
[h(π1)− h(π2)]2 1BL (π1) 1BL (π2)

))
(5.2.6)

is bounded from below by C L for some C > 0, which will complete the proof of (5.2.1).
For given π , we let

T (π) = {(T1, T ′
1, σ1), . . . , (TlL , T ′

lL
, σlL )} (5.2.7)

denote the starting points, ending points and signs of the lL excursions of π between 0
and L . For r ∈ N, we set

ZL
r = {T (π) : π ∈ BL , lL = r}, (5.2.8)
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and we denote by E(T, σ ) the set of excursions of length T and sign σ . Futhermore, we
write (ε1, . . . , εr ) ∼ T as shorthand notation for (ε1, . . . , εr ) ∈ E(T ′

1 − T1, σ1)× · · · ×
E(T ′

r − Tr , σr ). With this notation, we can write the quantity in (5.2.6) as

HL =
∑

r,r̃

∑

T ∈ZL
r

∑

T̃ ∈ZL
r̃

E

⎡

⎣ 1

(ZωL )
2

⎛

⎝
r∏

s=1

r̃∏

s̃=1

ZωT,s Zω
T̃ ,s̃

⎞

⎠ RL
r,T,r̃ ,T̃

⎤

⎦, (5.2.9)

with ZωL the total partition sum,

RL
r,T,r̃ ,T̃

=
∑

(ε1,...,εr )∼T

∑

(ε̃1,...,ε̃r̃ )∼T̃

r∏

s=1

r̃∏

s̃=1

e−λh(εs )e−λh(ε̃s̃ )

ZT,s ZT̃ ,s̃

⎡

⎣
r∑

s=1

h(εs)−
r̃∑

s̃=1

h(ε̃s̃)

⎤

⎦
2

(5.2.10)

and (recall (2.3.3))

ZωT,s =
∑

εs∈E(T,s)
e−λh(εs )−Hω,I (εs ),

ZT,s =
∑

εs∈E(T,s)
e−λh(εs ). (5.2.11)

Note that RL
r,T,r̃ ,T̃

does not depend on ω.
Step 3. Putting

Xs = h(εs), X̃ s̃ = h(ε̃s̃), t0 = z0/4M0(M0 − T0), (5.2.12)

we note that in RL
r,T,r̃ ,T̃

the random variables

(X1, . . . , Xr , X̃1, . . . , X̃r̃ ) (5.2.13)

are independent, and that the law of Xs depends on (T ′
s − Ts, σs). Since (T, T̃ ) ∈

ZL
r × ZL

r̃ , there are at least t0 L excursions of length jL and sign σL in T and T̃ . Let
(s1, . . . , st0 L) and (s̃1, . . . , s̃t0 L) be the indices of the t0L first such excursions in T and
T̃ , put

Y L
r,T,r̃ ,T̃

=
∑

s∈{1,...,r}\{s1,...,st0 L }
Xs −

∑

s̃∈{1,...,r̃}\{s̃1,...,s̃t0 L }
X̃ s̃, (5.2.14)

and write (5.2.10) as

RL
r,T,r̃ ,T̃

= ET,T̃

⎛

⎝
[

t0 L∑

k=1

Wk + Y L
r,T,r̃ ,T̃

]2⎞

⎠, (5.2.15)

where Wk = Xsk − X̃ s̃k and ET,T̃ denotes expectation w.r.t. the law of (5.2.13). Clearly,
W = (Wk)k∈{1,...,t0 L} are i.i.d., symmetric and bounded random variables. Denote their
variance by vL . We can choose T0 large enough so that the Wk are not constant. Moreover,
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since the Wk have only a finite number of laws, there exists an a > 0 such that vL > a
for all λ ∈ Iε(λ0) and L ≥ L2.
Step 4. At this stage, we may assume without loss of generality that PT,T̃ (Y

L
r,T,r̃ ,T̃

≥
0) ≥ 1

2 . Then (5.2.15) gives

RL
r,T,r̃ ,T̃

≥ PT,T̃ (Y
L

r,T,r̃ ,T̃
≥ 0) 1

2 ET,T̃

⎛

⎝
[

t0 L∑

k=1

Wk

]2⎞

⎠ ≥ 1
4 E( jL ,σL )

⎛

⎝
[

t0 L∑

k=1

Wk

]2⎞

⎠,

(5.2.16)

where E( jL ,σL ) is expectation w.r.t. the law of W . Since the Wk take only values smaller
than 2M0, their third moments are bounded by some finite N uniformly in λ ∈ Iε(λ0)

and ( j, σ ) ∈ �0. Therefore we can apply the Berry-Esseen theorem and, writing ξ(u) =
P(N (0, 1) ≤ u), u ∈ R with N (0, 1) a standard normal random variable, can assert
that, for all u ∈ R, λ ∈ Iε(λ0) and ( j, σ ) ∈ �0,

∣∣∣∣∣P( j,σ )

(
t0 L∑

k=1

Wk ≤ u
√

t0LvL

)
− ξ(u)

∣∣∣∣∣ ≤
3N

a3/2
√

t0 L
, (5.2.17)

where P( j,σ ) is the law of W when ( jL , σL) = ( j, σ ). Taking the restriction of the r.h.s.

of (5.2.16) to the event K = {∑t0 L
k=1 Wk/

√
t0 LvL ∈ [1, 2]}, we obtain

RL
r,T,r̃ ,T̃

≥ vL t0 L

4
P( j,σ )(K ) ≥ at0 L

4

(
ξ(2)− ξ(1)− 6N

a3/2
√

t0 L

)
, (5.2.18)

which implies that RL
r,T,r̃ ,T̃

≥ t ′0 L for L large enough and some t ′0 > 0. Recalling (5.2.9),
we can now estimate

HL ≥ t ′0 L E

(
[Pω,IL ]⊗2(BL)

)
≥ t ′0 L/4(M0 − T0), (5.2.19)

which yields (5.2.1) with C = t ′0 L/4(M0 − T0). ��
The following assumption will be needed in Sects. 5.3–5.5.

Assumption 5.2.2. For all (α, β) ∈ CONE and λ > 0 there exist C(λ) > 0 and δ0 > 0
such that, for all δ ∈ (0, δ0],

uI(λ− δ) + uI(λ + δ)− 2uI(λ) ≤ C(λ)δ2. (5.2.20)

Although we are not able to prove this assumption, we believe it to be true for the follo-
wing reason. First, as a consequence of Proposition 5.1.1, we have that, for all (α, β) ∈
CONE, λ �→ u(α, β; λ) is infinitely differentiable on the set {λ ∈ [0,∞) : u(α, β; λ) >
κ̃(λ)}. Since λ �→ κ̃(λ) is infinitely differentiable on [0,∞), this implies that λ �→
u(α, β; λ) is infinitely differentiable on the interior of the set {λ ∈ [0,∞) : u(α, β; λ) =
κ̃(λ)}. Thus, the assumption only concerns the values of λ located at the boundary of
the latter. For these values, proving the assumption amounts to proving the reverse of
inequality (5.2.1), i.e., showing that the variance of the number of horizontal steps made
by the polymer of length L is of order L , which we may reasonably expect to be true.
In Remark 5.3.3 we give a weaker alternative to Assumption 5.2.2.
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5.3. Smoothness of φI in its localized phase. Having collected in Sects. 5.1–5.2 some
key properties of the dual free energy uI , we are now ready to look at what these imply
for φI . We begin by showing that φI is strictly concave.

Lemma 5.3.1. Let

D(δ) = 1
2φ

I
(

1

ρ0 + δ

)
+ 1

2φ
I
(

1

ρ0 − δ

)
− φI

(
1

ρ0

)
. (5.3.1)

Then, for all (α, β) ∈ CONE and ρ0 ∈ (0, 1) there exist C > 0 and δ0 > 0 such that, for
all δ ∈ (0, δ0],

D(δ) ≤ −Cδ2. (5.3.2)

This inequality implies the strict concavity of ρ �→ φI(1/ρ) on (0, 1].
Proof. Lemma 5.2.1 states the strict convexity of λ �→ uI(λ), which implies the uni-
queness of the maximiser in the variational formula (5.1.19), i.e., there exists a unique
λ0 = λ0(ρ) ≥ 0 such that φI(1/ρ0) = λ0ρ0 + uI(λ0). Let x > 0. By picking
λ = λ0 − xδ in (5.1.19) with µ = 1/(ρ0 + δ), and λ = λ0 + xδ in (5.1.19) with
µ = 1/(ρ0 − δ), we obtain

D(δ) ≤ 1
2 [(λ0 − xδ)(ρ0 + δ) + uI(λ0 − xδ)]
+ 1

2 [(λ0 + xδ)(ρ0 − δ) + uI(λ0 + xδ)] − λ0ρ0 − uI(λ0)

= −xδ2 + 1
2 [uI(λ0 − xδ) + uI(λ0 + xδ)− 2uI(λ0)]. (5.3.3)

Picking x = 1/2C(λ0), with C(λ0) the constant in Assumption 5.2.2, we see that (5.3.3)
implies, for 0 < δ < 2C(λ0)δ0,

D(δ) ≤ −xδ2 + C(λ0)x
2δ2 = −δ2/4C(λ0), (5.3.4)

which proves (5.3.2). To prove the claim made below (5.3.2), pick 1 ≤ u < v and
consider (5.3.1) at the point ρ0 = (u + v)/2. Then, by (5.3.1–5.3.2), there exists a
0 < δ < (v − u)/2 such that

φI( 1
ρ0+δ )− φI( 1

ρ0
)

δ
<
φI( 1

ρ0
)− φI( 1

ρ0−δ )
δ

. (5.3.5)

Since v > ρ0 + δ > ρ0 − δ > u, it follows that

∂−φI

∂ρ

(
1

ρ

)
|ρ=v ≤ l.h.s. (5.3.5) < r.h.s. (5.3.5) ≤ ∂+φI

∂ρ

(
1

ρ

)
|ρ=u, (5.3.6)

with − and + denoting the left- and the right-derivative. ��
We are now ready to prove that φI is smooth. Let

Lφ =
{
(α, β, µ) = CONE × [1,∞) : φI(α, β;µ) > κ̂(µ)

}
, (5.3.7)

i.e., the region where the single linear interface model is localized.

Proposition 5.3.2. (α, β, µ) �→ φI(α, β;µ) is infinitely differentiable on Lφ .
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Proof. Let (α, β, µ) ∈ Lφ . Lemma 5.2.1 states the strict convexity of λ �→ uI(λ) on
{λ : u(λ) > κ̃(λ)} and it can be shown that λ �→ κ̃(λ) is strictly convex on [0,∞). This
entails that λ �→ uI(λ) is strictly convex on [0,∞). Therefore, the variational formula in
(5.1.19) attains its maximum at a unique point λ(µ) ≥ 0, so that the variational formula
in (5.1.14) allows us to write

φI(µ) = λ(µ)/µ + sup
ρ∈(0,1]

{−λ(µ)ρ + φI(1/ρ)}, (5.3.8)

after which the strict concavity of ρ �→ φI(1/ρ) (recall Lemma 5.3.1) implies that this
supremum is attained uniquely at ρ = 1/µ. Since φI(ρ) ≥ κ̂(ρ) for all ρ, and φI(µ) >
κ̂(µ), the variational formula in (5.1.20) allows us to write uI(λ(µ)) > κ̃(λ(µ)), and
therefore (α, β, λ(µ)) ∈ Lu .

Next, let

S = {(α, β, µ, λ) ∈ CONE × [1,∞)× [0,∞) : (α, β, µ) ∈ Lφ, (α, β, λ) ∈ Lu
}
,

(5.3.9)

and define ϒ1 as

ϒ1 : (α, β, µ, λ) ∈ S �→ ∂(λ/µ + uI(λ))
∂λ

. (5.3.10)

We want to apply the implicit function theorem in Bredon [1], Chapter II, Theorem 1.5,
to ϒ1. This requires checking three properties:

(i) ϒ1 is infinitely differentiable on S.
(ii) For all (α, β, µ) ∈ Lφ , λ(µ) is the unique λ ∈ [1,∞) such that (α, β, λ) ∈ Lu

and ϒ1(α, β, µ, λ(µ)) = 0.
(iii) For all (α, β, µ) ∈ Lφ , ∂ϒ1

∂λ
(α, β, µ, λ(µ)) �= 0.

Property (i) holds because uI is infinitely differentiable on Lu (by Proposition 5.1.1).
Property (ii) holds because λ �→ uI(λ) is strictly convex (by Lemma 5.2.1). Moreover,
Lemma 5.2.1 gives that

∂ϒ1

∂λ
(α, β, µ, λ(µ)) = ∂2uI

∂λ2 (α, β, λ(µ)) > 0, (5.3.11)

so property (iii) holds too. We can therefore indeed use the implicit function theorem,
obtaining that (α, β, µ) �→ λ(µ) and (α, β, µ) �→ φI(α, β;µ) are infinitely differen-
tiable on Lφ . ��
Remark 5.3.3. Assumption 5.2.2 can be weakened. Namely, instead of assuming finite
curvature of λ �→ u(α, β; λ), we may assume strict concavity of µ �→ µφI(µ) (which
is already known to be concave). This strict concavity (which is implied by Assumption
5.2.2, Lemma 5.3.1 and (5.4.1)) is sufficient to guarantee, in the proof of Proposition
5.3.2, that λ(µ) in (5.3.8) is unique and satisfies (α, β, λ(µ)) ∈ Lµ. The latter in turn is
enough to carry out the rest of the proof.
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5.4. Smoothness of ψAB in its localized phase. In this section we transport the properties
of φI obtained in Sect. 5.3 to ψAB . We begin with some elementary observations. Fix
(α, β) ∈ CONE and recall (2.3.4). By Lemma 5.3.1 and Lemma 2.2.1(ii), for all a ≥ 2,
(c, b) �→ cφI(c/b) and (c, b) �→ (a −c)κ(a −c, 1−b) are strictly concave on DOM(a).
Consequently, for all a ≥ 2, the supremum of the variational formula in (2.3.6) is attained
at a unique pair (c, b) ∈ DOM(a) (use that DOM(a) is a convex set).

Next, note that Lemma 5.3.1 and Proposition 5.3.2 imply that for all (α, β, ρ0) ∈ Lφ
there exists a C > 0 such that

∂2

∂ρ2 [ρφI(ρ)](ρ0) = 1
ρ3

0

∂2

∂ρ2

[
φI (1/ρ)

] (
1
ρ0

)
≤ −C. (5.4.1)

Let

Lψ = {(α, β, a) ∈ CONE × [2,∞) : ψAB(α, β; a) > � }, (5.4.2)

i.e., the region where ψAB is localized. Our main result in this section is the following.

Proposition 5.4.1. (α, β, a) �→ ψAB(α, β; a) is infinitely differentiable on Lψ .

Proof. Define

Lα,β,a = {(c, b) ∈ DOM(a) : φI(α, β; c/b) > κ̂(c/b)}. (5.4.3)

As noted above, the variational formula in (2.3.6) attains its maximum at a unique pair
(c(α, β; a), b(α, β; a)) ∈ DOM(a). We write (c(a), b(a)), suppressing (α, β) from the
notation. Since (α, β) ∈ L (recall (1.3.1)), Lemma 2.2.2 (iv) and Proposition 2.3.4 imply
that (c(a), b(a)) ∈ Lα,β,a . Let

F(c, b) = cφ(c/b), F̃(c, b) = (a − c)κ(a − c, 1 − b), (5.4.4)

and denote by {Fc, Fb, Fcc, Fcb, Fbb} the partial derivatives of order 1 and 2 of F with
respect to the variables c and b (and similarly for F̃). By the strict concavity of (c, b) �→
F(c, b)+ F̃(c, b) in DOM(a), we know that (c(a), b(a)) is also the unique pair in Lα,β,a
at which Fc + F̃c = 0 and Fb + F̃b = 0.

We need to show that (c(a), b(a)) is infinitely differentiable w.r.t. (α, β, a). To that
aim we again use the implicit function theorem. Define

R = {(α, β, a, c, b) : (α, β, a) ∈ Lψ, (c, b) ∈ Lα,β,a} (5.4.5)

and

ϒ2 : (α, β, a, c, b) ∈ R �→ (Fc + F̃c, Fb + F̃b). (5.4.6)

Let J2 be the Jacobian determinant of ϒ2 as a function of (c, b). Applying the implicit
function theorem to ϒ2 requires checking three properties:

(i) ϒ2 is infinitely differentiable on R.
(ii) For all (α, β, a) ∈ Lψ , (c(a), b(a)) is the only pair in Lα,β,a satisfying ϒ2 = 0.

(iii) For all (α, β, a) ∈ Lψ , J2 �= 0 in (c(a), b(a)).
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As explained below (5.4.4), property (ii) holds. Proposition 5.3.2 and Lemma 2.2.2 (ii)
show that also property (i) holds. Computing the Jacobian determinant J2, we get

J2 = (Fcc + F̃cc)(Fbb + F̃bb)− (Fcb + F̃c,b)
2. (5.4.7)

Since Fcc Fbb − F2
cb = 0, Fbb = µ2 Fcc and Fcb = µFcc, (5.4.7) becomes

J2 = F̃cc F̃bb − F̃2
cb + Fcc[F̃bb + 2µF̃cb + µ2 F̃cc]. (5.4.8)

By the concavity of c �→ F(c, b) and c �→ F̃(c, b), we have Fcc ≤ 0 and F̃cc ≤ 0.
Moreover, by the concavity of (c, b) �→ F̃(c, b), its Hessian matrix necessarily has
two non-positive eigenvalues. Therefore, the determinant of this matrix is non-negative,
i.e., F̃cc F̃bb − F̃2

cb ≥ 0. This, together with the inequality F̃cc ≤ 0, implies that µ �→
F̃bb + 2µF̃cb + µ2 F̃cc is non-positive on R. Hence J2 ≥ 0.

Lemma 5.4.2. F̃cc F̃bb − F̃2
cb > 0.

Proof. The strict inequality can be checked with MAPLE. In [7], an explicit variational
formula is given for the entropy function in (2.2.2), which is easily implemented. ��
It follows from Lemma 5.4.2 that J2 > 0, which proves property (iii). We know from
Lemma 2.2.1 (ii) and Proposition 5.3.2 that F̃ and F are infinitely differentiable on
DOM(a) for all a ∈ [2,∞). Hence, the claim indeed follows the implicit function theo-
rem. ��

We close this section with the following observations needed in Sect. 5.5.

Lemma 5.4.3. Fix (α, β) ∈ CONE.

(i) For all k, l ∈ {A, B}, a �→ ψkl(a) is strictly concave on [2,∞).
(ii) For all k, l ∈ {A, B} with kl �= B B, lima→∞ aψkl(a) = ∞.

(iii) For all k, l ∈ {A, B}, lima→∞ ∂[aψkl(a)]/∂a ≤ 0.

Proof. (i) This is a straightforward consequence of the observations made at the
beginning of this section, together with the strict concavity of µ �→ µφI(µ)
proved in Lemma 5.3.1.

(ii) Because ψAB ≥ ψAA, it suffices to consider kl ∈ {AA, B A}. For kl = AA,
the claim is immediate from Lemma 2.2.1(iii) and (2.3.1). For kl = B A, we use
the fact that φI(µ) ≥ κ̂(µ) (recall (2.3.8)) in combination with the variational
formula of Lemma 2.3.2 with c = a − 3

2 and b = 1
2 . This gives

aψB A(a) ≥ 1
2 (2a − 3) κ̂(2a − 3) + 3

2

[
κ( 3

2 ,
1
2 ) + 1

2 (β − α)
]
, (5.4.9)

which yields the claim because µκ̂(µ) ∼ logµ as µ → ∞ by Lemma 2.2.2(iii).
(iii) Since, for all k, l ∈ {A, B},ψAB ≥ ψkl and a �→ aψkl(a) is concave, it suffices to

prove that lim supa→∞ ψAB(a) ≤ 0. The latter is immediate from the variational
formula in (2.3.6) and the fact that lima→∞ φI(a) = 0 (Lemma 4.2.6(i)) and
lima→∞ κ(a, 1) = 0((2.2.3)). ��
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5.5. Smoothness of f on L. We begin by proving the uniqueness of the maximisers in
the variational formula in (2.1.11). For (α, β) ∈ CONE, p ∈ (0, 1) and (ρkl) ∈ R(p), let
(recall (2.1.9))

f(ρkl ) = sup
(akl )∈A

V ((ρkl), (akl)) ,

O(ρkl ) = {kl ∈ {A, B}2 : ρkl > 0},
(5.5.1)

R f (p) = {(ρkl) ∈ R(p) : f = f(ρkl )},
P(p) =

⋃

(ρkl )∈R f (p)

O(ρkl ).

Proposition 5.5.1. (i) For every (α, β) ∈ CONE, p ∈ (0, 1) and ρ = (ρkl) ∈ R(p),
there exists a unique family aρ = (aρkl)kl∈Oρ

∈ A satisfying

fρ =
∑

kl∈Oρ
ρkla

ρ
klψkl(a

ρ
kl)∑

kl∈Oρ
ρkla

ρ
kl

= V (ρ, aρ). (5.5.2)

(ii) For every (α, β) ∈ CONE and p ∈ (0, 1), R f (p) �= ∅, and there exists a unique
family (a∗

kl)(k,l)∈P(p) such that aρkl = a∗
kl for all ρ ∈ R f (p) and kl ∈ Oρ .

Proof. Recall Theorem 2.1.1. (i) The case ρB B = 1 is trivial. In that case we have
fρ = supaB B≥2 ψB B(aB B) = ψB B(a∗) = 1

2β +� (by Lemma 2.2.1(iv)), and so aρB B =
a∗ = 5

2 . Therefore assume that ρB B < 1. Then at least one pair k1l1 ∈ {AA, AB, B A}
satisfies ρk1l1 > 0, and since limu→∞ uψk1l1(u) = ∞ by Lemma 5.4.3 (ii), we have
fρ > 0. The latter is needed in what follows.

To prove existence of aρ , for R > 0 let

fρ,R = sup
a∈[2,R]Oρ

V (ρ, a). (5.5.3)

We prove that for R large enough the supremum in (5.5.2) is attained in [2, R]Oρ , i.e.,
fρ = fρ,R . Indeed, for a ∈ A, ρ ∈ R(p) and k2l2 ∈ {A, B}2 we have (recall (2.1.9))

∂V

∂ak2l2
(ρ, a) = ρk2l2∑

kl ρklakl

{
∂[uψk2l2(u)]

∂u
|u=ak2l2

− V (ρ, a)

}
. (5.5.4)

Moreover, for every kl ∈ {A, B}2, u �→ uψkl(u) is strictly concave and u �→
∂[uψkl(u)]/∂u is strictly decreasing (by Lemma 5.4.3(i)) and converges to a limit ≤ 0 as
u → ∞ (by Lemma 5.4.3(iii)). Pick R > 0 large enough so that ∂[uψkl(u)]/∂u ≤ fρ/2
for all u ≥ R and kl ∈ {A, B}2. We will show that fρ > fρ,R implies that V (ρ, a) ≤
max{ fρ/2, fρ,R} for all a ∈ A\[2, R]Oρ , and this will provide a contradiction.

To achieve the latter, assume that AA ∈ Oρ and consider, for instance, a ∈ A such
that aAA > R and akl ≤ R for kl ∈ Oρ\{AA}. Fix x ≥ R and denote by ax the element
of Oρ given by ax

AA = x and ax
kl = akl , kl ∈ Oρ\{AA}. Since aR ∈ [2, R]Oρ , we have

V (ρ, aR) ≤ fρ,R < fρ and

V (ρ, ax )− V (ρ, aR) =
∫ x

R

∂V

∂aAA
(ρ, au) du. (5.5.5)
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Since, by (5.5.4), the sign of (∂V/∂aAA)(ρ, au) is equal to the sign of ∂[uψAA(u)]/∂u−
V (ρ, au), it follows that V (ρ, ax ) decreases with x whenever V (ρ, ax ) ≥ fρ/2. Since
V (ρ, aR) < fρ , we therefore have V (ρ, ax ) ≤ max{ fρ/2, fρ,R} for all x ≥ R and,
consequently, V (ρ, a) ≤ max{ fρ/2, fρ,R}. Therefore the supremum of (5.5.2) is attai-
ned in [2, R]Oρ .

The uniqueness of aρ realising fρ = V (ρ, aρ) follows from (5.5.4), because for each
kl ∈ {A, B}Oρ we must have (∂V/∂akl)(ρ, aρ) = 0. This means that for each kl ∈ Oρ

we must have

∂[uψkl(u)]
∂u

|u=aρkl
= V (ρ, aρ) = sup

a∈A
V (ρ, a), (5.5.6)

and, since u �→ uψkl(u) is strictly concave (by Lemma 5.4.3(i)), there is only one such
akl for each kl ∈ Oρ .
(ii) As shown in [7], Proposition 3.2.1, ρ �→ fρ is continuous on R(p). Therefore,
the compactness of R(p) entails R f (p) �= ∅. Consider (ρ1, ρ2) ∈ R f (p) and kl ∈
Oρ1 ∩ Oρ2 . Then (5.5.4) also gives

∂[uψkl(u)]
∂u

|u=a
ρ1
kl

= f = ∂[uψkl(u)]
∂u

|u=a
ρ2
kl
, (5.5.7)

which, by the strict concavity of u �→ uψkl(u), implies that aρ1
kl = aρ2

kl . ��
We are now ready to prove the smoothness of f on L. Because of the inequalities

ψAA ≥ ψB B and ψAB ≥ ψB A, the concavity of a �→ aψAA(a) and a �→ aψAB(a)
implies that the variational problem in (2.1.11) reduces to the matrices {Mγ , γ ∈ C},
with Mγ the matrix and C the set defined in (2.1.8). Write V (γ, aAB, aAA) for the quan-
tity V (Mγ , (aAB , aAA, 0, 0)) defined in (2.1.9), put γ ∗ = max C and let (x∗(α, β),
y∗(α, β)) be the unique maximisers (a∗

AB, a∗
AA) defined in Proposition 5.5.1. By diffe-

rentiating the quantity V (γ, x∗, y∗)with respect to γ , we easily get that R f (p) contains
only the matrix Mγ ∗ . Thus, we have the equality

f (α, β) = V (γ ∗, x∗, y∗) = γ ∗x∗ψAB(x∗) + (1 − γ ∗)y∗κ(y∗, 1)

γ ∗x∗ + (1 − γ ∗)y∗ . (5.5.8)

Since (α, β) ∈ L, we have ψAB(x∗) > � and therefore (α, β, x∗) ∈ Lψ . To show that
f is infinitely differentiable on L, we once more use the implicit function theorem. For
that we define

N = {(α, β, x, y) : (α, β) ∈ L, (α, β, x) ∈ Lψ, y > 2} (5.5.9)

and

ϒ3 : (α, β, x, y) ∈ N �→
(
∂V

∂x
(γ ∗, x, y),

∂V

∂y
(γ ∗, x, y)

)
. (5.5.10)

Let J3 be the Jacobian determinant of ϒ3 as a function of (x, y). To apply the implicit
function theorem we must check three properties:

(i) ϒ3 is infinitely differentiable on N .
(ii) For all (α, β) ∈ L, (x∗, y∗) is the only pair in [2,∞)2 satisfying (α, β, x, y) ∈ N

and ϒ3(α, β, x, y) = 0.
(iii) For all (α, β) ∈ L, J3 �= 0 in (α, β, x∗, y∗).
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It follows from Lemma 2.2.1(ii), Proposition 5.4.1 and (5.5.8) that property (i) and (ii)
hold. To get property (iii), abbreviate xψAB(x) = ψ(x), yκ(y, 1) = κ(y). From Lemma
2.2.1(ii) and Proposition 5.4.1, we know that ψ and κ are infinitely differentiable. By
(5.5.10),

J3 = ∂2V

∂x2

∂2V

∂y2 −
(
∂2V

∂x∂y

)2

. (5.5.11)

Taking into account that (∂V/∂x)(x∗, y∗) = (∂V/∂y)(x∗, y∗) = 0, we deduce from
(5.5.8) that ψ ′(x∗) = κ ′(y∗) and J3 = c∗ψ ′′(x∗)κ ′′(y∗), where c∗ > 0 is a constant
depending on (x∗, y∗). We already know from Lemma 2.2.1(iii) that κ ′′(y∗) < 0.

Lemma 5.5.2. ψ ′′(x∗) < 0.

Proof. For x > 2 satisfying (α, β, x) ∈ Lψ , we will show that (xψAB(x))′′ < 0. For
this it suffices to show that there exists a C > 0 such that, for δ small enough,

T (δ) = 1
2 [(x + δ)ψAB(x + δ) + (x − δ)ψAB (x − δ)− 2xψAB(x)] ≤ −Cδ2.

(5.5.12)

Set x−δ = x −δ and xδ = x + δ, and let (e−δ, b−δ) and (eδ, bδ) be the unique maximisers
of (2.3.6) at x−δ and xδ . Pick (c, b) = ( 1

2 (e−δ + eδ),
1
2 (b−δ + bδ)) in (2.3.6). Since

x = 1
2 (x−δ + xδ), we obtain T (δ) ≤ V1(δ) + V2(δ) with

V1(δ) = 1
2

[
e−δφI( e−δ

b−δ ) + eδφ
I( eδ

bδ
)− (e−δ + eδ)φ

I
(

e−δ+eδ
b−δ+bδ

)]
,

V2(δ) = (x−δ − e−δ) κ(x−δ − e−δ, 1 − b−δ) + (xδ − eδ) κ(xδ − eδ, 1 − bδ)

−(x−δ + xδ − e−δ − eδ) κ
( 1

2 (x−δ + xδ − e−δ − eδ), 1 − 1
2 (b−δ + bδ)

)
.

(5.5.13)

Lemma 5.5.3. The determinant of the Jacobian matrix of (a, b) �→ aκ(a, b) is strictly
positive everywhere on DOM.

Proof. The non-negativity of the Jacobian determinant is a consequence of the concavity
of (a, b) �→ aκ(a, b) (recall Lemma 2.2.1(ii)). The strict positivity can be checked with
MAPLE via the explicit expression κ(a, b) given in den Hollander and Whittington [7].

��
Since (a, b) �→ aκ(a, b) is concave and twice differentiable, Lemma 5.5.3 allows us

to assert that on DOM the Jacobian matrix of (a, b) �→ aκ(a, b) has two strictly negative
eigenvalues. The second derivatives of κ are continuous. Moreover, the uniqueness of
(e−δ, b−δ) and (eδ, bδ) imply their continuity in δ, and so there exists a C̃ > 0 such that,
for δ small enough,

V2(δ) ≤ −C̃
[
((x−δ − xδ)− (e−δ − eδ))

2 + (b−δ − bδ)
2
]
. (5.5.14)
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In what follows, we set Y ( e
b ) = (∂2/∂2µ)[µφI(µ)]( e

b ). To bound V1(δ) from above,
we compute the Jacobian matrix of (e, b) �→ eφI(e/b):

1
b Y ( e

b )

(
1 − e

b

− e
b

e2

b2

)
. (5.5.15)

Thus, if for t ∈ [0, 1] and u ∈ [0, t] we set eu,t = e−δ+eδ
2 + t (u − 1

2 )(e−δ − eδ) and

bu,t = b−δ+bδ
2 + t (u − 1

2 )(b−δ − bδ), then a Taylor expansion gives us

V1(δ) = 1
4

∫ 1

0
dt t

∫ t

0
du 1

bu,t
Y
(

eu,t
bu,t

) [
(e−δ − eδ)− eu,t

bu,t
(b−δ − bδ)

]2
. (5.5.16)

As explained in the proof of Proposition 5.4.1, the fact that (α, β, x) ∈ Lψ implies
(e0, b0) ∈ Lα,β,x and therefore (α, β, e0

b0
) ∈ Lφ . Moreover, Lφ is an open subset of

CONE × [1,∞) and (eδ, bδ) is continuous in δ, so that for δ small enough, t ∈ [0, 1]
and u ∈ [0, t], we have (α, β, eu,t

bu,t
) ∈ Lφ . This implies, by Lemma 5.3.1 and by the

continuity of the second derivative of φI on Lφ , that there exists a Ĉ > 0 such that,
for δ small enough, 1

bu,t
Y ( eu,t

bu,t
) ≤ −Ĉ . At this stage, we need to consider the following

three cases:
Case 1. |b−δ − bδ| ≥ b0

e0

δ
4 . Then, (5.5.14) gives V2(δ) ≤ − C̃b2

0
42e2

0
δ2.

Case 2. |e−δ − eδ| ≤ δ. Then, since xδ − x−δ = 2δ, (5.5.14) gives V2(δ) ≤ −C̃δ2.
Case 3. |e−δ − eδ| > δ and |b−δ − bδ| < b0

e0

δ
4 . By continuity of eδ and bδ ,

eu,t
bu,t

≤ 2e0
b0

for
δ small enough and therefore

|(e−δ − eδ)− eu,t
bu,t
(b−δ − bδ)| ≥ |e−δ − eδ| − 2e0

b0
|b−δ − bδ| ≥ δ − 2e0

b0

b0
e0

δ
4 = δ

2 .

(5.5.17)

Thus, (5.5.16) and (5.5.17) give V1(δ) ≤ − Ĉ
48δ

2.

We conclude by setting C = min{ C̃b2
0

42e2
0
, C̃, Ĉ

48 }, so that Cases 1,2 and 3 give T (δ) ≤
−Cδ2 for δ small enough, which proves (5.5.12). ��
Lemma 5.5.2 implies that J3 > 0. Hence, the implicit function theorem can indeed be
applied to (5.5.8), and it follows that f is infinitely differentiable on L.
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