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Abstract. In this paper we study a model describing a copolymer in a micro-emulsion.
The copolymer consists of a random concatenation of hydrophobic and hydrophilic
monomers, the micro-emulsion consists of large blocks of oil and water arranged in a
percolation-type fashion. The interaction Hamiltonian assigns energy —« to hydrophobic
monomers in oil and energy —f to hydrophilic monomers in water, where «, 5 are param-
eters that without loss of generality are taken to lie in the cone {(a,8) € R*: a > |8|}.
Depending on the values of these parameters, the copolymer either stays close to the oil-
water interface (localization) or wanders off into the oil and/or the water (delocalization).
Based on an assumption about the strict concavity of the free energy of a copolymer
near a linear interface, we derive a variational formula for the quenched free energy per
monomer that is column-based, i.e., captures what the copolymer does in columns of dif-
ferent type. We subsequently transform this into a variational formula that is slope-based,
i.e., captures what the polymer does as it travels at different slopes, and we use the latter
to identify the phase diagram in the («, 8)-cone. There are two regimes: supercritical (the
oil blocks percolate) and subcritical (the oil blocks do not percolate). The supercritical
and the subcritical phase diagram each have two localized phases and two delocalized
phases, separated by four critical curves meeting at a quadruple critical point. The dif-
ferent phases correspond to the different ways in which the polymer moves through the
micro-emulsion. The analysis of the phase diagram is based on three hypotheses about the
possible frequencies at which the oil blocks and the water blocks can be visited. We show
that these three hypotheses are plausible, but do not provide a proof.

Received by the editors June 28, 2013; accepted September 26, 2016.

2010 Mathematics Subject Classification. 60F10, 60K37, 82B27.

Key words and phrases. Random copolymer, random micro-emulsion, free energy, percolation,
variational formula, large deviations, concentration of measure.

The research in this paper is supported by ERC Advanced Grant 267356-VARIS. NP is grateful
for hospitality at the Mathematical Institute of Leiden University during extended visits in 2011,
2012 and 2013 within the framework of this grant. FdH and NP are grateful for hospitality at the
Institute for Mathematical Sciences at the National University of Singapore in May of 2015.

Remark: The part of this paper dealing with the “column-based” variational formula for the
free energy has appeared as a preprint on ArXiv: den Hollander and Pétrélis (2012).

941


http://alea.impa.br/english/index_v13.htm
https://www.math.leidenuniv.nl/~denholla/
http://www.math.sciences.univ-nantes.fr/~petrelis/

942 F. den Hollander and N. Pétrélis

1. Outline

In Section 2, we introduce our model for a copolymer in a micro-emulsion and
present a variational formula for the quenched free energy per monomer, which
we refer to as the slope-based variational formula, involving the fractions of time
the copolymer moves at a given slope in the interior of the two solvents and the
fraction of time it moves along the interfaces between the two solvents. This vari-
ational formula is the corner stone of our analysis. In Section 3, we identify the
phase diagram. There are two regimes: supercritical (the oil blocks percolate) and
suberitical (the oil blocks do not percolate). We obtain the general structure of the
phase diagram, and state a number of properties that exhibit the fine structure of
the phase diagram as well. The latter come in the form of theorems and conjectures,
and are based on three hypotheses.

In Section 4, we introduce a truncated version of the model in which the copoly-
mer is not allowed to travel more than M blocks upwards or downwards in each
column, where M € N is arbitrary but fixed. We give a precise definition of the
various ingredients that are necessary to state the slope-based variational formula
for the truncated model, including various auxiliary quantities that are needed for
its proof. Among these is the quenched free energy per monomer of the copolymer
crossing a block column of a given type, whose existence and variational charac-
terization are given in Section 5. In Section 6, we derive an auxiliary variational
formula for the quenched free energy per monomer in the truncated model, which
we refer to as the column-based variational formula, involving both the free energy
per monomer and the fraction of time spent inside single columns of a given type.
At the end of Section 6, we show how the truncation can be removed by letting
M — oo. In Section 7, we use the column-based variational formula to derive the
slope-based variational formula. In Section 8 we use the slope-based variational for-
mula to prove our results for the phase diagram. Appendices A—G collect several
technical results that are needed along the way.

For more background on random polymers with disorder we refer the reader to
the monographs by Giacomin (2007) and den Hollander (2009), and to the overview
paper by Caravenna et al. (2012).

2. Model and slope-based variational formula

In Section 2.1 we define the model, in Section 2.2 we state the slope-based
variational formula, in Section 2.3 we place this formula in the proper context.

2.1. Model. To build our model, we distinguish between three scales: (1) the mi-
croscopic scale associated with the size of the monomers in the copolymer (= 1, by
convention); (2) the mesoscopic scale associated with the size of the droplets in the
micro-emulsion (L, > 1); (3) the macroscopic scale associated with the size of the
copolymer (n > L,).

Copolymer configurations. Pick n € N and let W, be the set of n-step di-
rected self-avoiding paths starting at the origin and being allowed to move upwards,
downwards and to the right, i.e.,

W, = {7r = (m)iy € (Ng X 7"t my = (0,1),
Tip1 — ™ € {(1,0),(0,1),(0,-1)}VO<i<n, m#m VO<i<j<n} (21)
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The copolymer is associated with the path 7. The i-th monomer is associated with
the bond (m;—1,7;). The starting point 7 is chosen to be (0,1) for convenience.

FIGURE 2.1. Microscopic disorder w in the copolymer. Dashed
bonds represent monomers of type A (hydrophobic), drawn bonds
represent monomers of type B (hydrophilic).

Microscopic disorder in the copolymer. Each monomer is randomly labelled
A (hydrophobic) or B (hydrophilic), with probability % each, independently for
different monomers. The resulting labelling is denoted by

w={w;: i €N} e{A, B\ (2.2)

and represents the randomness of the copolymer, i.e., w; = A and w; = B mean that
the i-th monomer is of type A, respectively, of type B (see Fig. 2.1). We denote by
P,, the law of the microscopic disorder.

o ]
Wi iy
N Y

FIGURE 2.2. Mesoscopic disorder €2 in the micro-emulsion. Light
shaded blocks represent droplets of type A (oil), dark shaded blocks
represent droplets of type B (water). Drawn is also the copolymer,
but without an indication of the microscopic disorder w attached
to it.

Mesoscopic disorder in the micro-emulsion. Fix p € (0,1) and L, € N.
Partition (0,00) x R into square blocks of size Ly,:

(0,00)xR=|J Az, (), Ap,(x)=aL,+ (0, L, (2.3)
€Ny XZ
Each block is randomly labelled A (oil) or B (water), with probability p, respec-
tively, 1 — p, independently for different blocks. The resulting labelling is denoted
by
Q={Qx): €Ny x Z} € {A,B}oxz (2.4)
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and represents the randomness of the micro-emulsion, i.e., Q(z) = A and Q(z) = B
mean that the z-th block is of type A, respectively, of type B (see Fig. 2.2). The
law of the mesoscopic disorder is denoted by Pg and is independent of P,,. The size
of the blocks L,, is assumed to be non-decreasing and to satisfy

logn

lim L, =00 and lim L, =0, (2.5)
n—00 n—oo M

i.e., the blocks are large compared to the monomer size but small compared to the

copolymer size. For convenience we assume that if an A-block and a B-block are

next to each other, then the interface belongs to the A-block.

Hamiltonian and free energy. Given w, ) and n, with each path = € W,, we
associate an energy given by the Hamiltonian

H:f:fn (ma,8) = Z (a 1{wi = Q(Lé_lm) = A} + 61 {wi = Q(L;i_lm) = B}),

i=1

(2.6)
(LT:;,I,m) denotes the label of the block the step (m;_1,7;) lies in. What this
Hamiltonian does is count the number of AA-matches and BB-matches and assign
them energy « and 3, respectively, where a, 8 € R. (Note that the interaction is
assigned to bonds rather than to sites, and that we do not follow the convention
of putting a minus sign in front of the Hamiltonian.) Similarly to what was done
in our earlier papers den Hollander and Whittington (2006), den Hollander and
Pétrélis (2009a,b, 2010), without loss of generality we may restrict the interaction
parameters to the cone

where 2

CONE = {(a, B) € R?: a > |4|}. (2.7)
For n € N, the free energy per monomer is defined as
Fo%a,8) = Llog 22 (a,8) with Z2% (a,8) = eHuL, (menB) (9.8)
TEWn,

and in the limit as n — oo the free energy per monomer is given by

fla,Bip) = lim £ (o), (2.9)
provided this limit exists w, 2-a.s.
Henceforth, we subtract the term a) ., 1{w; = A} from the Hamiltonian,

which by the law of large numbers w-a.s. is $n(1+0(1)) as n — oo and corresponds
to a shift of —5 in the free energy. The latter transformation allows us to lighten
the notation, starting with the Hamiltonian in (2.6), which becomes

Y (ma,8) =Y (5 1{w; = B} —al{w = A}) 1 {Q(L;;fm) - B} . (2.10)

=1

2.2. The slope-based variational formula for the quenched free energy per step. The-
orem 2.1 below gives a variational formula for the free energy per step in (2.9). This
variational formula, which is the corner stone of our paper, involves the fractions
of time the copolymer moves at a given slope through the interior of solvents A and
B and the fraction of time it moves along AB-interfaces. This variational formula
will be crucial to identify the phase diagram, i.e., to identify the typical behavior
of the copolymer in the micro-emulsion as a function of the parameters a, 8, p (see
Section 3 for theorems and conjectures). Of particular interest is the distinction
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between localized phases, where the copolymer stays close to the AB-interfaces, and
delocalized phases, where it wanders off into the solvents A and/or B. We will see
that there are several such phases.

To state Theorem 2.1 we need to introduce some further notation. With each
[ € Ry = [0,00) we associate two numbers v4;,vp,; € [1 + [,00) indicating how
many steps per horizontal step the copolymer takes when travelling at slope [ in
solvents A and B, respectively. We further let vz € [1,00) denote the number of
steps per horizontal step the copolymer takes when travelling along A B-interfaces.
These numbers are gathered into the set

B={v=(va,vp,vz) €CxCx[l,00)} (2.11)
with
C= {l — u; on Ry : continuous with w; > 141 VI € R+}. (2.12)

Let R(u,l) be the entropy per step carried by trajectories moving at slope [
with the constraint that the total number of steps divided by the total number of
horizontal steps is equal to u € [1 + {,00) (for more details, see Section 4.1). Let
o7(u; «, B) be the free energy per step when the copolymer moves along an AB-
interface, with the constraint that the total number of steps divided by the total
number of horizontal steps is equal to u € [1,00) (for more details, see Section 4.2).
Let p = (pa, pB,pz) € M1(Ry x Ry x {Z}), where pa(dl) and pp(dl) denote the
fractions of horizontal steps at which the copolymer travels through solvents A and
B at a slope that lies between [ and [+ dl, and pz denotes the fraction of horizontal
steps at which the copolymer travels along AB-interfaces. The possible values of p
form a set

Ry C Mi(Ry x Ry x {Z}) (2.13)

that depends on p (for more details, see Section 4.5). With these ingredients we
can now state our slope-based variational formula.

Theorem 2.1. [slope-based variational formula] For every (a, 3) € CONE and
p € (0,1) the free energy in (2.9) exists for P-a.e. (w,Q) and in L*(P), and is given
by

E\

, U
e, Bip) = sup sup =7 ), (2.14)
pPER, vEB D(Pﬂ})

where
N(p,v) = / va g R(vay,l) pa(dl) +/ VB, [FG(UB,I,Z) + ﬁ%a] p(dl)
0 0
+ (% (bI(’UI;Oé,/B) ﬁI?

D(p,v) = / o1 paldl) + / vp pp(dl) + vz pr. (2.15)
0 0

with the convention that N(p,v)/D(p,v) = —oc when D(p,v) = co.

Remark 2.2. In order to obtain (2.15), we need to assume strict concavity of an
auxiliary free energy, involving a copolymer in the vicinity of a single linear inter-
face. This is the object of Assumption 4.3 in Section 4.2, which is supported by a
brief discussion.
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2.3. Discussion. The variational formula in (2.14-2.15) is tractable, to the extent
that the k-function is known explicitly, the ¢z-function has been studied in depth
in the literature (and much is known about it), while the set B is simple. The key
difficulty of (2.14-2.15) resides in the set 7?,1,, whose structure is not easy to control.
A detailed study of this set is not within the scope of our paper. Fortunately, it
turns out that we need to know relatively little about R, in order to identify the
general structure of the phase diagram (see Section 3). With the help of three
hypotheses on 7_2p, each of which is plausible, we can also identify the fine structure
of the phase diagram (see Section 3.2).

We expect that the supremum in (2.14) is attained at a unique p € 7@,, and a
unique v € B. This maximizer corresponds to the copolymer having a specific way
to configure itself optimally within the micro-emulsion.

Column-based variational formula. The slope-based variational formula in
Theorem 2.1 will be obtained by combining two auxiliary variational formulas.
Both formulas involve the free energy per step ¥(0,ue;«, 8) when the copolymer
crosses a block column of a given type ©, taking values in a type space V, for a
given ug € RT that indicates how many steps on scale L,, the copolymer makes in
this column type. A precise definition of this free energy per block column will be
given in Section 4.4.2.

The first auxiliary variational formula is stated in Section 4 (Proposition 4.6)
and gives an expression for ¥(0,ue;«, 8) that involves the entropy &(-,1) of the
copolymer moving at a given slope [ and the quenched free energy per monomer ¢z
of the copolymer near a single linear interface. Consequently, the free energy of our
model with a random geometry is directly linked to the free energy of a model with
a non-random geometry. This will be crucial for our analysis of the phase diagram
in Section 3. The microscopic disorder manifests itself only through the free energy
of the linear interface model.

The second auxiliary variational formula is stated in Section 6 (Proposition 6.1).
It is referred to as the column-based variational formula, and provides an expression
for f(a, B;p) by using the block-column free energies 1(0, ug;a, 8) for © € V and
by weighting each column type with the frequency p(d©) at which it is visited
by the copolymer. The numerator is the total free energy, the denominator is
the total number of monomers (both on the mesoscopic scale). The variational
formula contains suprema over (ug)gy € By; and p € Ry, The reason why these
two suprema appear in (6.2) is that, as a consequence of assumption (2.5), the
mesoscopic scale carries no entropy: all the entropy comes from the microscopic
scale, through the free energy per monomer in single columns. The mesoscopic
disorder manifests itself only through the presence of the set R,.

Removal of the corner restriction. In our earlier papers den Hollander and
Whittington (2006), den Hollander and Pétrélis (2009a,b, 2010), we allowed the
configurations of the copolymer to be given by the subset of W,, consisting of those
paths that enter pairs of blocks through a common corner, exit them at one of the
two corners diagonally opposite and in between stay confined to the two blocks that
are seen upon entering. The latter is an unphysical restriction that was adopted to
simplify the model. In these papers we derived a variational formula for the free
energy per step that had a much simpler structure. We analyzed this variational
formula as a function of «, 8, p and found that there are two regimes, supercritical
and subcritical, depending on whether the oil blocks percolate or not along the
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coarse-grained self-avoiding path running along the corners. In the supercritical
regime the phase diagram turned out to have two phases, in the subcritical regime
it turned out to have four phases, meeting at two tricritical points.

In Section 3 we show how the variational formula in Theorem 2.1 can be used
to identify the phase diagram. It turns out that there are two types of phases:
localized phases (where the copolymer spends a positive fraction of its time near
the AB-interfaces) and delocalized phases (where it spends a zero fraction of its time
near the AB-interfaces). Which of these phases occurs depends on the parameters
a, B,p. Tt is energetically favorable for the copolymer to stay close to the AB-
interfaces, where it has the possibility of placing more than half of its monomers
in their preferred solvent (by switching sides when necessary), but this comes with
a loss of entropy. The competition between energy and entropy is controlled by
the energy parameters «, 8 (determining the reward of switching sides) and by the
density parameter p (determining the density of the AB-interfaces). It turns out
that the phase diagram is different in the supercritical and the subcritical regimes,
where the A-blocks percolate, respectively, do not percolate. The phase diagram is
richer than for the model with the corner restriction.

A

FIGURE 2.3. Picture of a directed polymer with bulk disorder.
The different shades of black, grey and white represent different
values of the disorder.

Comparison with the directed polymer with bulk disorder. A model of
a polymer with disorder that has been studied intensively in the literature is the
directed polymer with bulk disorder. Here, the set of paths is

W, = {7‘(’ = (Z.,Tl'i)?:o S (No X Zd)n+1t mo =0, ||7Ti+1 — 7TzH =1V0<i< n},

(2.16)
where | - || is the Euclidean norm on Z?, and the Hamiltonian is
HY (m) =AY w(i,m), (2.17)
i=1

where A > 0 is a parameter and w = {w(i,z): i € N, x € Z9} is a field of i.i.d.
R-valued random variables with zero mean, unit variance and finite moment gen-
erating function, where N is time and Z? is space (see Fig. 2.3). This model can be
viewed as a version of a copolymer in a micro-emulsion where the droplets are of the
same size as the monomers. For this model a variational formula for the free energy
has been derived by Rassoul-Agha et al. (2013, 2016+). However, the variational
formula is abstract and therefore does not lead to a quantitative understanding of



948 F. den Hollander and N. Pétrélis

the phase diagram. Most of the analysis in the literature relies on the application
of martingale techniques (for details, see e.g. den Hollander, 2009, Chapter 12).

In our model (which is restricted to d = 1 and has self-avoiding paths that may
move north, south and east instead of north-east and south-east), the droplets are
much larger than the monomers. This causes a self-averaging of the microscopic
disorder, both when the copolymer moves inside one of the solvents and when it
moves near an interface. Moreover, since the copolymer is much larger than the
droplets, also self-averaging of the mesoscopic disorder occurs. This is why the free
energy can be expressed in terms of a variational formula, as in Theorem 2.1. This
variational formula acts as a jumpboard for a detailed analysis of the phase diagram.
Such a detailed analysis is lacking for the directed polymer with bulk disorder.

The directed polymer in random environment has two phases: a weak disorder
phase (where the quenched and the annealed free energy are asymptotically compa-
rable) and a strong disorder phase (where the quenched free energy is asymptotically
smaller than the annealed free energy). The strong disorder phase occurs in dimen-
sion d = 1,2 for all A > 0 and in dimension d > 3 for A > A., with A, € [0,00] a
critical value that depends on d and on the law of the disorder. It is predicted that
in the strong disorder phase the copolymer moves within a narrow corridor that
carries sites with high energy (recall our convention of not putting a minus sign in
front of the Hamiltonian), resulting in superdiffusive behavior in the spatial direc-
tion. We expect a similar behavior to occur in the localized phases of our model,
where the polymer targets the AB-interfaces. It would be interesting to find out
how far the coarsed-grained self-avoiding path in our model travels vertically as a
function of n.

3. Phase diagram

In Section 3.1 we identify the general structure of the phase diagram. In par-
ticular, we show that there is a localized phase £ in which A B-localization occurs,
and a delocalized phase D in which no AB-localization occurs. In Section 3.2, we
obtain various results for the fine structure of the phase diagram, both for the su-
percritical regime p > p. and for the subcritical regime p < p., where p. denotes
the critical threshold for directed bond percolation in the positive quandrant of Z2.
This fine structure comes in the form of theorems and conjectures, and is based on
three hypotheses, which we discuss in Section 3.3.

3.1. General structure. To state the general structure of the phase diagram, we
need to define a reduced version of the free energy, called the delocalized free energy
fp, obtained by taking into account those trajectories that, when moving along
an AB-interface, are delocalized in the A-solvent. The latter amounts to replacing
the linear interface free energy ¢z (vz;a, 8) in (2.14) by the entropic constant lower
bound #(vz,0). Thus, we define

fpla, B;p) = sup sup == (3.1)
PER, vEB DD(p,’U)
Wlth 0o [ee)
Np(p,v /UAM va,l)[pa +ﬁz5o](dl)+/UBz [#(vpa, 1) + £52] pp(dl), (3.2)
0 0

/UA,I [pa + pz do](dl) + /UB,lﬁB<dl)7 (3.3)
0 0
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provided Dp(p,v) < oo. Note that fp(a,;p) depends on (o, 3) through a — 3
only.
We partition the CONE into the two phases D and L defined by

L = {(a, B) € CONE: f(a,B; p) > fpl(a, B;p)},
D= {(O{,/B) € CONE: f(aaﬂv p) = f'D(avﬂ7p)}
The localized phase L corresponds to large values of /3, for which the energetic
reward to spend some time travelling along AB-interfaces exceeds the entropic

penalty to do so. The delocalized phase D, on the other hand, corresponds to small
values of 3, for which the energetic reward does not exceed the entropic penalty.

(3.4)

B
. Ja(“{)
° By
D .
£ - a
a(y)
5

FIGURE 3.4. Qualitative picture of the phase diagram in CONE.
The curve v — S.(y) separates the localized phase £ from the
delocalized phase D. The parameter v measures the distance be-
tween the origin and the point on the lower boundary of CONE from
which the line with slope 1 hits the curve at height (). Note that
a(y) = vv/2 is the value where this line crosses the horizontal axis.

For a > 0, let J, be the halfline in CONE defined by (see Fig. 3.4)
Jo={(a+5,8): pe[-5,00)} (3.5)

Theorem 3.1. (a) There exists a curve v+ B.(7), lying strictly inside the upper
quadrant, such that

LNJ, = {(CV +ﬁ7ﬁ)1 B € (@:(7(&))700)}7
DN Jo={(a+8.8): BE[-2 B(v(a)]},

for all a € (0,00) with y(a) = a//2.
(b) Inside phase D the free energy f is a function of o — B only, i.e., f is constant
on Jo ND for all a € (0,00).

(3.6)

3.2. Fine structure. This section is organized as follows. In Section 3.2.1, we con-
sider the supercritical regime p > p., and state a theorem. Subject to two hypothe-
ses, we show that the delocalized phase D (recall (3.4)) splits into two subphases
D = D; U Dy such that the fraction of monomers placed by the copolymer in the
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B solvent is strictly positive inside D; and equals 0 in Dy. Thus, D; and D- are
said to be non-saturated, respectively, saturated. We give a characterization of the
critical curve a — S.(a) (recall (3.6)) in terms of the single linear free energy and
state some properties of this curve. Subsequently, we formulate a conjecture stating
that the localized phase L also splits into two subphases £ = £ U Ly, which are
non-saturated, respectively, saturated. In Section 3.2.2, we consider the subcritical
regime p < p., and obtain similar results.

For p € (0,1) and (o, 3) € CONE, let O, , 5 denote the subset of R, containing
those p that maximize the variational formula in (2.14), i.e.,

_ N(p,
Op.ap = {ﬁ ERp: fla,Bip) = sup DE; Zi } (3.7)

Throughout the remainder of this section we need the following hypothesis:

Hypothesis 3.2. For all p € (0,1) and « € (0, 00) there exists a p € O o0 such that
pz > 0.

This hypothesis will allow us to derive an expression for S.(y) in (3.6).

Remark 3.3. Hypothesis 3.2 will be discussed in Section 3.3. The existence of
p is proven in Appendix I for a truncated version of our model, introduced in
Section 4.3. This truncated model approximates the full model as the truncation
level diverges (see Proposition 6.5).

For ¢ € (0, 00), define v(c) = (va(c),vg(c),vz(c)) € B as

vayle) = Xfl(c)7 1 €[0,00),
vpa(e) =x e+ 252), 1€[0,00), )
vz(c) =z, 9, (ugz(u))(2) > ¢ > 9 (upz(u))(2), (3.10)
where
xi(v) = (3u(u fi(u,l))(v) (3.11)

and y; ' denotes the inverse function. Lemma B.1(v-vi) ensures that v — y;(v) is
one-to-one between (1 + 1,00) and (0,00). The existence and uniqueness of z in
(3.10) follow from the strict concavity of u +— u@z(u) (see Assumption 4.3) and
Lemma C.1 (see (C.1-C.2)). We will prove in Proposition 8.1 that the maximizer
v € B of (2.14) necessarily belongs to the familly {v(c): ¢ € (0,00)}.

For p € R, define

KA(p):/Ooo(l—i—l)pA(dl), KB(p):/OOO(l—i—l)pB(dl). (3.12)

3.2.1. Supercritical regime.

Splitting of the D-phase. We partition D into two phases: D = D; U Ds. To
that end we introduce the delocalized A-saturated free energy, denoted by fp,(p),
which is obtained by restricting the supremum in (3.1) to those p € R,, that do not
charge B. Such p, which we call A-saturated, exist because p > p., allowing for
trajectories that do not visit B-blocks. Thus, fp,(p) is defined as

ND (ﬁ,?])

fp,(p) = sup sup ==

2() PERp wERB DD(,D,U)
Kp(p)=0

(3.13)
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FIGURE 3.5. Qualitative picture of the phase diagram in the su-
percritical regime p > p.

with -
Nou(po) = [ o k(uasd) [a + pz ol (3.14)
0
provided Dp(p,v) < oo. Note that fp,(p) is a constant that does not depend on
(a, 8).

With the help of this definition, we can split the D-phase defined in (3.4) into
two parts (see Fig. 3.5):

e The D;-phase corresponds to small values of 3 and small to moderate values
of . In this phase there is no AB-localization and no A-saturation. For the
variational formula in (2.14) this corresponds to the restriction where the
AB-localization term disappears while the A-block term and the B-block
term contribute, i.e.,

Dy = {(a, B) € CONE: f(ev, ; p) = fo(e, B; p) > fp,(p)}- (3.15)

e The Dy-phase corresponds to small values of 5 and large values of a. In
this phase there is no AB-localization but A-saturation occurs. For the
variational formula in (2.14) this corresponds to the restriction where the
AB-localization term disappears and the B-block term as well, i.e.,

Dy = {(a, 3) € CONE: f(a,; p) = fp,(p)}. (3.16)

Let 7, be the subset of ﬁp containing those p that have a strictly positive B-
component and are relevant for the variational formula in (2.14), i.e.,

To={p€Ry: Kg(p) >0, Ka(p) + Kp(p) < co}. (3.17)

Note that 7, does not depend on («, 8). To state our main result for the delocalized
part of the phase diagram we need the following hypothesis:

Hypothesis 3.4. For all p > p,

o Jo 940 [ + pz 8ol dl)
et Kp(p)

< 00, (3.18)
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where
gA(l) = ’UA’l(C) [k(’UA’l(C), l) — C]

with v4,(c) as defined in (3.8).

(3.19)

c=fp,

Remark 3.5. Hypothesis 3.4 will allow us to show that D; and Ds are non-empty.
This hypothesis, which will be discussed further in Section 3.3, relies on the fact
that, in the supercritical regime, large subcritical clusters typically have a diameter
that is of the same size as their circumference.

Remark 3.6. The function g4 has the following properties: (1) ga(0) > 0; (2)
g4 is strictly decreasing on [0, 00); (3) limy 00 ga(l) = —oco. Property (2) follows
from Lemma B.1(ii) and the fact that u — uk(u,!) is concave (see Lemma B.1(i)).
Property (3) follows from fp, > 0, Lemma B.1(iv) and the fact that v4 ;(fp,) > 1+1
for I € [0,00). Property (1) follows from property (2) because [~ ga(l)[pa +
pr0o)(dl) = 0 for all p maximizing (3.13).

Let
o =sup{a > 0: fp(a,0; p) > fp,(p)}. (3.20)

Theorem 3.7. Assume Hypotheses 3.2 and 3.4. Then the following hold:
(a) a* € (0,00).
(b) For every a € [0,a*),

JaND1=JoaND={(a+5,p): Be[-F, Be(v(a))] (3.21)
(c) For every a € [a*, 00),
JaNDy=JoaND ={(a+p,8): B €[-5,B(v(a))]} (3.22)

(d) For every a € [0,00),

Be(v(@)) =inf {8 > 0: ¢z(Va0;a+ B,8) > i&(Vap,0)} with v = U(fp(a,O(; p)))
3.23

(e) On [a*,00), a > B.(y(a)) is concave, continuous, non-decreasing and bounded

from above.

(f) Inside phase Dy the free energy f is a function of « — B only, i.e., f is constant

on Jo, N Dy for all a € [0, a*].

(9) Inside phase Dy the free energy [ is constant.

Splitting of the L-phase. We partition £ into two phases: £ = £1 U Ls. To that
end we introduce the localized A-saturated free energy, denoted by fr,, which is
obtained by restricting the supremum in (2.14) to those p € R, that do not charge
B, i.e.,

E\
el

7/U)

v)’

(3.24)

]
Rl

fﬁz (avﬁ; p) = SuP su
PERp  wE
Kp(p)=0

[o\lge]

(

provided D(p,v) < oo.
With the help of this definition, we can split the £-phase defined in (3.4) into
two parts (see Fig. 3.5):
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e The L;-phase corresponds to small to moderate values of o and large values
of 5. In this phase AB-localization occurs, but A-saturation does not, so
that the free energy is given by the variational formula in (2.14) without
restrictions, i.e.,

L= {(a,ﬁ) € CONE: f(a, 8;p) > max{fr,(c, B;p), fp(oz,ﬁ;p)}}. (3.25)

e The Ls-phase corresponds to large values of @ and 8. In this phase both
AB-localization and A-saturation occur. For the variational formula in
(2.14) this corresponds to the restriction where the contribution of B-blocks
disappears, i.e.,

Ly = {(a, f) € CONE: f(a,B;p) = fr,(a,B;p) > fp(e, 5 p)}. (3.26)

Conjecture 3.8. (a) There exists a curve v — B5(v), lying above the curve vy —
Be(7v), such that

LyNJo={(a+8,8): B e (Be(v()), BZ(v())]},

. (3.27)
LN Jo={(a+p5,8): B€[B(y(a)),00)}
for all a € (0, o).
(b) L1 N Jy =0 for all o € (a*, 0).
FIGURE 3.6. Qualitative picture of the phase diagram in the sub-
critical regime p < p..
3.2.2. Subcritical regime.
Splitting of the D-phase. Let
K, = inf Kgp(p). (3.28)

PER,

Note that K, > 0 because p < p.. We again partition D into two phases: D =
D1 UDy. To that end we introduce the delocalized mazximally A-saturated free
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energy, denoted by fp, (p), which is obtained by restricting the supremum in (3.1)
to those p € R, achieving K,,. Thus, fp,(p) is defined as

N. D,V
fo,(a,B;p) = sup sup Lﬁj), (3.29)
PERp  weEB DD(pvv)
Kp(p)=Kp

provided Dp(p,v) < co. Note that, contrary to what we had in the supercritical
regime, fp,(«, 8;p) depends on o — 3.

With the help of this definition, we can split the D-phase defined in (3.4) into
two parts (see Fig. 3.6):

e The D;-phase corresponds to small values of § and small to moderate val-
ues of o. In this phase there is no AB-localization and no maximal A-
saturation. For the variational formula in (2.14) this corresponds to the
restriction where the AB-localization term disappears while the A-block
term and the B-block term contribute, i.e.,

Dy = {(a, B) € CONE: f(e, B; p) = fp(e, B; p) > fp, (D)} (3.30)

e The Dy-phase corresponds to small values of 5 and large values of a. In
this phase there is no AB-localization and maximal A-saturation. For the
variational formula in (2.14) this corresponds to the restriction where the
AB-localization term disappears and the B-block term is minimal, i.e.,

Dy = {(a, ) € CONE: f(a,B; p) = fp,(p)}- (3.31)
Let
Tp={P€Ry: Kp(p) > K,, Ka(p) + Kp(p) < oo}. (3.32)

To state our main result for the delocalized part of the phase diagram we need the
following hypothesis:

Hypothesis 3.9. For all p > p.,

Jo" 9a.a—s(0) [pa + pz So](dl)
sup —
T, Kg(p)

< o0, (3.33)

where

9aa—p(l) =va(c) [R(vaule),l) — c| (3.34)

c= fp,(a—p)
with v4 (c) as defined in (3.8).
Remark 3.10. Hypothesis 3.9 will allow us to show that D; and Dy are non-empty.
It is close in spirit to Hypothesis 3.4 and will be discussed further in Section 3.3.
Let

o =inf{a>0: Vo' >a3IpeOpao: Kp(p) =K,}. (3.35)
Theorem 3.11. Assume Hypotheses 3.2 and 3.9 hold. Then the following hold:
(a) &* € (0,00).

(b) Theorems 3.7(b,c,d) hold with «* replaced by &*.
(¢) Theorem 3.7(f) holds on the whole D whereas Theorem 3.7(g) does not hold.
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Splitting of the L-phase. We again partition £ into two phases: £ = £ U L.
To that end we introduce the localized mazimally A-saturated free energy, denoted
by fc,, which is obtained by restricting the supremum in (2.14) to those p € R,
achieving K. Thus, f,(c, 8; p) is defined as

>d
el

(
(

0)

v)’

fro(a,B;p) = sup  sup (3.36)

PERp  wE
Kpg(p)=Kp

o]
ol
sl

provided D(p,v) < oo.
With the help of this definition, we can split the £-phase defined in (3.4) into
two parts (see Fig. 3.6):
e The L;-phase corresponds to small and moderate values of o and large
values of 8. In this phase AB-localization occurs, but maximal A-saturation
does not, so that the free energy is given by the variational formula in (2.14)
without restrictions, i.e.,

Ll = {(04,6) € CONE: f(aaﬂap) > max{fﬁz(avﬂ;p)a f'D(a7B7p)}} (337)

e The Ly-phase corresponds to large values of a and §. In this phase both
AB-localization and maximal A-saturation occur. For the variational for-
mula in (2.14) this corresponds to the restriction where the contribution of
B-blocks is minimal, i.e.,

Ly = {(a,B) € CONE: f(a,B;p) = fr,(a, B;p) > fola, B; p)}- (3.38)

Conjecture 3.12. Conjecture 3.8 holds with &* instead of o*.

3.3. Heuristics in support of the hypotheses.

Hypothesis 3.2. At (o,0) € CONE, the BB-interaction vanishes while the AA-
interaction does not, and we have seen earlier that there is no localization of the
copolymer along AB-interfaces when 8 = 0. Consequently, when the copolymer
moves at a non-zero slope [ € R\ {0} it necessarily reduces the time it spends in
the B-solvent. To be more specific, let p € 7?,,, be a maximizer of the variational
formula in (2.14), and assume that the copolymer moves in the emulsion by following
the strategy of displacement associated with p. Consider the situation in which the
copolymer moves upwards for awhile at slope [ > 0 and over a horizontal distance
h > 0, and subsequently changes direction to move downward at slope I’ < 0 and
over a horizontal distance h’ > 0. This change of vertical direction is necessary
to pass over a B-block, otherwise it would be entropically more advantageous to
move at slope (hl + h'l')/(h + h’) over a horizontal distance h + h’ (by the strict
concavity of % in Lemma B.1(i)). Next, we observe (see Fig. 3.7) that when the
copolymer passes over a B-block, the best strategy in terms of entropy is to follow
the AB-interface (consisting of this B-block and the A-solvent above it) without
being localized, i.e., the copolymer performs a long excursion into the A-solvent but
the two ends of this excursion are located on the AB-interface. This long excursion
is counted in pz. Consequently, Hypothesis 3.2 (pz > 0) will be satisfied if we can
show that the copolymer necessarily spends a strictly positive fraction of its time
performing such changes of vertical direction. But, by the ergodicity of w and 2,
this has to be the case.

Hypothesis 3.4. The hypothesis can be rephrased in a simpler way. Recall
Remark 3.6 and note that there is an Iy € (0,00) such that g4 > 0 on [0,ly) and
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FIGURE 3.7. Entropic optimization when the copolymer passes
over a B-block.

ga < 0 on (lp,00). Assume by contradiction that Hypothesis 3.4 fails, so that the
ratio in (3.18) is unbounded. Then, by spending an arbitrarily small amount of
time in the B-solvent, the copolymer can improve the best saturated strategies by
moving some of the mass of pa(lg,00) to p4(0,1p), such that the entropic gain is
arbitrarily larger than the time spent in the B-solvent. In other words, failure of
Hypothesis 3.4 means that spending an arbitrarily small fraction of time in the
B-solvent allows the copolymer to travel flatter when it is in the A-solvent during
a fraction of the time that is arbitrarily larger than the fraction of the time it
spends in the B-solvent. This means that, instead of going around some large
cluster of the B-solvent, the copolymer simply crosses it straight to travel flatter.
However, the fact that large subcritical clusters scale are shaped like large balls
contradicts this scenario, because it means that the time needed to go around the
cluster is of the same order as the time required to cross the cluster, which makes
the unboundedness of the ratio in (3.18) impossible.

Hypothesis 3.9. Hypothesis 3.9 is similar to Hypothesis 3.4, except that in the
subcritical regime the copolymer spends a strictly positive fraction of time in the
B-solvent. Failure of Hypothesis 3.9 would lead to the same type of contradiction.
Indeed, the unboundedness of the ratio in (3.33) would mean that there are optimal
paths that spend an arbitrarily small additional fraction of time in the B-solvent
in such a way that the path can travel flatter in the A-solvent during a fraction
of the time that is arbitrarily larger than the fraction of the time it spends in the
B-solvent. Again, the fact that large subcritical clusters adopt round shapes rules
out such a scenario.

4. Key ingredients

In Section 4.1, we define the entropy per step &(u,!) carried by trajectories mov-
ing at slope [ € Ry with the constraint that the total number of steps divided by
the total number of horizontal steps is equal to u € [1 + [,00) (Proposition 4.1
below). In Section 4.2, we define the free energy per step ¢z(u) of a copolymer in
the vicinity of an AB-interface with the constraint that the total number of steps
divided by the total number of horizontal steps is equal to pu € [1,00) (Proposi-
tion 4.2 below). In Section 4.3, we introduce a truncated version of the model in
which we bound the vertical displacement on the block scale in each column of
blocks by M, with M € N arbitrary but fixed. (This restriction will be removed
in Section 6.5 by letting M — o0.) In Section 4.4, we combine the definitions
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in Sections 4.1-4.2 to obtain a variational formula for the free energy per step in
single columns of different types (Proposition 4.6 below). In Section 4.5 we define
the set of probability laws introduced in (2.13), which is a key ingredient of the
slope-based variational formula in Theorem 2.1. Finally, in Section 4.6, we prove
that the quenched free energy per step f(«,S;p) is strictly positive on CONE.

4.1. Path entropies at given slope.

Path entropies. We define the entropy of a path crossing a single column. To
that aim, we set

H={(u,l) € [0,00) x R: w>1+ ]|},

Hr={(uwl)eH:leZ uel+||+&}, LeN, (4.1)
and note that H N Q? = UpenHy. For (u,l) € H, we denote by Wy (u,l) the
set containing those paths m = (0, —1) + 7 with 7 € W, (recall (2.1)) for which
mur, = (L,lL) (see Fig. 4.8). The entropy per step associated with the paths in
Wi (u,l) is given by

r(u,l) = 2= log Wi (u,1)]. (4.2)

u.L steps

L

FIGURE 4.8. A trajectory in W (u,1).

The following propositions will be proven in Appendix A.
Proposition 4.1. For all (u,l) € HNQ? there exists a i(u,l) € [0,log 3] such that

lim &rp(u,l)= sup Fr(u,l)=Fr(u,l). (4.3)
L oo LeN

(u,l)EH ], (u,l)EH],
An explicit formula is available for &(u, 1), namely,

i(u, 1) ={ ZEZ)/’”"WD’ ﬁig (4.4)

where k(a,b), a > 14+0b, b > 0, and #(p), g > 1, are given in den Hollander
and Whittington (2006), Section 2.1, in terms of elementary variational formulas
involving entropies (see den Hollander and Whittington, 2006, proof of Lemmas
2.1.1-2.1.2). The two formulas in (4.4) allow us to extend (u,l) — K(u,l) to a
continuous and strictly concave function on H (see Lemma B.1).
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4.2. Free energy for a linear interface.

Free energy along a single linear interface. To analyze the free energy per
monomer in a single column we need to first analyze the free energy per monomer
when the path moves in the vicinity of an AB-interface. To that end we consider a
single linear interface T separating a solvent B in the lower halfplane from a solvent
A in the upper halfplane (the latter is assumed to include the interface itself).

For L € Nand p € 1+ 2, let W¥(u) = Wy (u,0) denote the set of pL-step
directed self-avoiding paths starting at (0,0) and ending at (L, 0). Recall (2.2) and
define

1
¢ (1) = T Lo zew and ¢ (p) = E[65 T (1), (4.5)
with
Zin= Y e |HpT(m)],
TEWE (k)
uL (46)
HpH(m) =Y (Bl{wi = B} — a l{w; = A}) 1{(mi_1,m) < 0},

=1

where (m;_1,m;) < 0 means that the i-th step lies in the lower halfplane, strictly
below the interface (see Fig. 4.9).

Proposition 4.2. (den Hollander and Whittington, 2006, Section 2.2.2)
For all (o, 8) € CONE and pn € QN [1,00) there exists a ¢z(p) = dz(p;a, B) € R
such that

lim 60 (1) = () for P-a.e. w and in L*(P). (4.7)

ne1+28

It is easy to check (with the help of concatenation of trajectories) that pu —
udz(p; «, B) is concave. For later use we need strict concavity:

Assumption 4.3. For all (o, 8) € CONE the function p — u¢dz(u;a, f) is strictly
concave on [1,00).

This property is plausible, but hard to prove. There is to date no model of a
polymer near a linear interface with disorder for which a property of this type
has been established. A proof would require an explicit representation for the free
energy, which for models with disorder typically is not available.

SolventA +— UL steps
SolventB «+——— Interface

FIGURE 4.9. Copolymer near a single linear interface.
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4.3. Path restriction. In the remainder of this section, as well as in Sections 5—
7, we will work with a truncation of the model in which we bound the vertical
displacement on the block scale in each column of blocks by M € N. The value
of M will be arbitrary but fized. In other words, instead of considering the full
set of trajectories W,,, we consider only trajectories that exit a column through a
block at most M above or M below the block where the column was entered (see
Fig. 4.10). The reason for doing the truncation is that is simplifies our proof of the
column-based variational formula. In Section 6.5 we will remove the truncation by
showing that the free energy of the untruncated model is the M — oo limit of the
free energy of the M-truncated model, and that the variational formulas match up
as well.

We recall (2.3) and, formally, we partition (0,00) X R into columns of blocks of
width L,, i.e.,

(0, OO) xR = UjENon,Ln7 Cj,Ln = UkEZALn (j, k)7 (48)

where Cj 1, is the j-th column. For each m € W,,, we let 7; be the time at which
7 leaves the (j — 1)-th column and enters the j-th column, i.e.,
Tj = sup{i eNy: m; € Cj—l,n} = 1nf{z e Ng: m; € Cj,n} -1, j=1,...,Nz—1,
(4.9)
where N indicates how many columns have been visited by 7. Finally, we let
v_1(m) = 0 and, for j € {0,...,Nr — 1}, we let v;(m) € Z be such that the
block containing the last step of the copolymer in C;,, is labelled by (7, v;(7)), i.e.,
(T 41-1,Try 1) € Apy (4, v5(m)). Thus, we restrict W, to the subset W, ns defined
as

Wi = {1 € Wyt |vj(m) —vj_(m)| S M Vj€{0,...,Nr — 1}}. (4.10)

LnI !

block of _ | > zone of
entrance exit

FIGURE 4.10. Example of a trajectory m € W, pr with M = 2
crossing the column Co 1, with v () = 2.

We recall (2.8) and we define Z:fn (M;,8) and f<$%(M;a, 3) the partition func-
tion and the quenched free energy restricted to those trajectories in Wi, s, i.e.,
w, .
M a,B) = Flog Zp (M, B) with Z, (Mie, ) = ) effma(med),

TEW, M

(4.11)
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and, as n — oo, the free energy per monomer is given by
F(M;a,B) = lim f2(M; o, B) (4.12)
n—oo

provided this limit exists w, 2-a.s.
In Remark 4.4 below we discuss how the mesoscopic vertical restriction can be
relaxed by letting M — oo.

Remark 4.4. As mentioned in Section 2.3, the slope-based variational formula in
Theorem 2.1 will be deduced from a column-based variational formula stated in
Proposition 6.1. In this framework, the truncated model is used as follows. First, we
prove the column-based variational formula for the truncated model: this will be the
object of Propositions 6.2-6.4 in Section 6.1.2. Next, we show with Proposition 6.5
that, as the truncation levl M diverges, the truncated free energy converges to
the non-truncated free energy. This will complete the proof of the column-based
variational formula for the non-truncated model. Finally, in Section 7, we transform
the column-based variational formula into the slope-based variational formula for
the non-truncated model.

4.4. Free energy in a single column and variational formulas. In this section, we
prove the convergence of the free energy per step in a single column (Proposition 4.5)
and derive a variational formula for this free energy with the help of Proposi-
tions 4.1-4.2. The variational formula takes different forms (Propositions 4.6),
depending on whether there is or is not an AB-interface between the heights where
the copolymer enters and exits the column, and in the latter case whether an AB-
interface is reached or mot.

In what follows we need to consider the randomness in a single column. To
that aim, we recall (4.8), we pick L € N and once 2 is chosen, we can record the
randomness of C; 1 as

Q(j_’ )= {Q(j,l): le Z} (413)
We will also need to consider the randomness of the j-th column seen by a trajectory
that enters C; 1, through the block Aj; with k # 0 instead of k£ = 0. In this case,
the randomness of C; 1, is recorded as

Pick L € N, x € {A, B}Z and consider Cy 1, endowed with the disorder ¥y, i.e.,
Q(0,-) = x. Let (n;)icz € Z” be the successive heights of the AB-interfaces in Co 1,
divided by L, i.e.,

e <n_1<ng<0<ng<ng <.... (4.15)
and the j-th interface of Co 1 is Z; = {0,...,L} x {n;L} (see Fig. 4.11). Next, for
r € Ny we set

kry =0if ny > r and k,, = max{i > 1: n;, < r} otherwise, (4.16)

while for r € —N we set

kry =0if ng <r and k,, = min{i <0: n; > r + 1} — 1 otherwise.
(4.17)

Thus, |k, | is the number of AB-interfaces between heigths 1 and rL in Co ..
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1 3
o= 2
| 1
1 0
Ny —1 4
n, ] -2

FiGure 4.11. Example of a column with disorder
X = (o x(=3), x(=2), x(—=1), x(0), x(1), x(2), - . .) =
(...,B,A,B,B,B,A,...). In this example, for instance,
k,Q’X = —1 and kl,x =0.

4.4.1. Free energy in a single column.

Column crossing characteristics. Pick L, M € N, and consider the first column
Co,r- The type of Cy 1, is determined by © = (x, E, z), where x = (x;)jez encodes
the type of each block in Cy 1, i.e., x; = Qg ;) for j € Z, and (£, x) indicates which
trajectories 7 are taken into account. In the latter, = is given by (AIl by, b1) such
that the vertical increment in Cp 1, on the block scale is AITl and satisfies |AII| < M
, 1.e., m enters Co 1, at (0,b9L) and exits Co 1, at (L, (AIL+b1)L). Asin (4.16) and
(4.17), we set ko = kam,y and we let Vin, be the set containing those © satisfying
ke # 0. Thus, © € Vi, means that the trajectories crossing Co 1 from (0,boL) to
(L, (AIL 4 by) L) necessarily hit an AB-interface, and in this case we set x = 1. If,
on the other hand, © € Vyint = V\ Vint, then we have kg = 0 and we set z = 1 when
the set of trajectories crossing Co r from (0,boL) to (L, (AIl 4 b1)L) is restricted
to those that do not reach an AB-interface before exiting Cy 1, while we set x = 2
when it is restricted to those trajectories that reach at least one A B-interface before
exiting Co 1. To fix the possible values taken by © = (x, =, x) in a column of width
L, we put Vr v = Vint, 2,0 U Vaing,L,m With

Vit = {06 AL bo, by, x) € {A, BY: x Zx {L, 2 .. 1}° x {1}
|ATL < M, kan,y # 0},
Vaintzr = { (06 AIL by, by, ) € {4, By x Zx {L, 2. 1} x {1,2}:
|AIL| < M, kam,y = 0}.
(4.18)
Thus, the set of all possible values of © is Vy; = Ur>1Vr v, which we partition
into Vasr = Vine,mr U Vaine, i (see Fig. 4.12) with
Vint, = UreN Vint,L,M
= {(x, AIL by, b1, z) € {A, B} x Z x (Qo.1)* x {1}: |AL| < M, kan,y # 0},
Vaint,M = UreN Vaint,L,M

= {(x, AIL by, b1, z) € {A, B} x Z x (Qo,1))* x {1,2}: |AII| < M, kamn, =0},
(4.19)
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where, for all I C R, we set Q; = I N Q. We define the closure of Vi as Vi =
Vint,mr U Vnine,pr with

Vint.ar ={(x, AIL bo, b1, ) € {A,BY*xZ x[0,1]*x{1}: |ALI| < M, kanx # 0},

Viine,nr ={ (X, AIL bo, b1, ) € {A,B}*xZx[0,1]*x{1,2}: |All| < M, kam,, = 0}.
(4.20)

b, —— _—

&q R

n, —

—— n, —

ATT=6

1 n, —

FI1GURE 4.12. Labelling of coarse-grained paths and columns. On
the left the type of the column is in Vi ar, on the right it is in
Vnint,M (Wlth M 2 6)

Time spent in columns. We pick L, M € N, © = (x, AIl, by, by, z) € Vi and
we specify the total number of steps that a trajectory crossing the column Cy 1 of
type O is allowed to make. For © = (y, AIl, by, b1, 1), set

te = 1+ sign(AII) (AT + by — bo) Liamzo} + 101 — bo| L{am=0}, (4.21)
so that a trajectory 7 crossing a column of width L from (0, boL) to (L, (AIl+b;)L)

makes a total of uL steps with u € tg + %. For © = (x, Al by, b1,2) in turn,
recall (4.15) and let

t@ =1+ min{2n1 - bo - bl - AH, 2|n0| + bo + b]_ + AH}, (422)

so that a trajectory m crossing a column of width L and type © € Vyint,r, i from
(0,boL) to (L, (ATl +by)L) and reaching an AB-interface makes a total of uL steps
with u € to + %.

At this stage, we can fully determine the set Weg ,, 1 consisting of the uL-step
trajectories m that are considered in a column of width L and type ©. To that
end, for © € Vip 1, ;s we map the trajectories m € Wy (u, AIl + by — by) onto Co 1,
such that 7 enters Co 1, at (0,b9L) and exits Co 1, at (L, (AIl4b1)L) (see Fig. 4.13),
and for © € Vyine, 1, i we remove, depending on z € {1,2}, those trajectories that
reach or do not reach an AB-interface in the column (see Fig. 4.14). Thus, for
© € Ving,o,m and u € te + 2, we let

W@,u,L = {T&' = (O,boL) + 7. TE WL(U,AH + b — bo)}, (423)
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ulL steps

iy

FIGURE 4.13. Example of a wul-step path inside a col-
umn of type (x,AlILbg,b1,1) € Vig,r with disorder x =
(., x(0),x(1),x(2),...) = (..., A,B,A,...), vertical displace-
ment AIl = 2, entrance height by and exit height b;.

uL steps

-

L L

FIGURE 4.14. Two examples of a ulL-step path inside a col-
umn of type (x,AIlLby,b1,1) € Vi, (left picture) and
(x, AL by, b1,2) € Viint,r (right picture) with disorder x =

(oo xX(0), X1 (2, X(3), X(4), ) = (... B,B,B,B,A,...),
vertical displacement AIl = 2, entrance height by and exit height
b1.

and, for © € Vyint,r,0mr and u € tg + %,

We ,u,L = {7‘(’ S (O,boL)+WL(u, ATl + by — bo):
7 reaches no AB—interface} if zg =1,
W@,%L = {71' S (0, boL)+VVL(U7 AIT + bl — bo)l

7 reaches an AB—interface} if zg = 2,

(4.24)
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with zg the last coordinate of © € V;;. Next, we set
Vi = {(@,u) €Vrm x[0,00): u€te+ %},

Vir ={(0,u) € Vi X Qpr00): u>te},
v;\/[: {(@,U) ev]\/I X [LOO): UZt@}, (425)
which we partition into Vitlt,L,]M U V:int,L,]V[’ 1nt M U Vnnt M and th M U annt M-

Note that for every (O, u) € V}, there are inﬁmtely many L € N such that (e, u)
VI because (©,u) € Vi, for all ¢ € N as soon as (0©,u) € V] .

Restriction on the number of steps per column. In what follows we abbre-
viate

EIGH = {(M,m) e Nx N: m > M + 2}, (4.26)

and, for (M, m) € EIGH, we consider the situation where the number of steps uL
made by a trajectory m in a column of width L € N is bounded by mL. Thus, we
restrict the set V ar to the subset V"), containing only those types of columns ©
that can be crossed in less than mL steps, i.e.,

Vil =10 €V um: te < mj. (4.27)

Note that the latter restriction only concerns those O satisfying z¢ = 2. When
zo = 1 a quick look at (4.21) suffices to state that t¢ < M + 2 < m. Thus, we set
VITM Vlnt ,L,M U annt ,L,M with Vlnt LM — Vint,L,M and with

Vrfi?’lt,L,]V[ = {@ S {A,B}Z X 7 X {%,%,...,1}2 X {172}

|AIL < M, ko =0 and te < m}.

(4.28)

The sets Vyp = th v YU Vi v and Vi = th MU Vnmt M are obtained by
mimicking (4.19-4.2 ) In the same spirit, we restrict V} ,, to

Vi ={(0,u) €Vp s © € V' u <m} (4.29)

* Y% « .
and Vi yy = Vi v Y Ve, 0, m With

V:;nwi M= {(&u) € Vo X [1L,m]: u€te+ %}, (430)
;im,L,M:{(eau) € Vaine, v X [1,m]: “6t@+%}'
We set also V3™ = th Uy

nlnt M with th M — ULGNth ,L,M and ant MO

UrenViint 1 > and rewrite these as

V;th {(&U) € Vint.w X Qum): u > te},
Vit = 1(0,uw) € Vil ar X Qumy: u>te . (4.31)

We further set V,; = Vin’t, MY V:i’nrz M With
Vivenr = {(0,u) € Vi py x [1,m]: u>to},
(4.32)

*, M

vni,nt,M = {(@a u) € V:ilnt,M X [L m}: u 2 t@}'
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Existence and uniform convergence of free energy per column. Recall
(4.23), (4.24) and, for L € N, w € {A, B} and (©,u) € V[ ), we associate with
each m € We .1, the energy

ulL

Y (1) = (B1{ws = B} — al{w; = A}) 1{X(Lm7m) - B}, (4.33)

i=1

where X(Lﬂ'i—lﬂri) indicates the label of the block containing (m;_1, ;) in a column
with disorder x of width L. (Recall that the disorder in the block is part of the type
of the block.) The latter allows us to define the quenched free energy per monomer
in a column of type © and size L as

1 w,x
VE(0,u) = —log Z7(0,u) with  Z§(0,u) = > et (434)

TE€EWeo u,L

Abbreviate ¥ (0,u) = E[¢¥(0,u)], and note that for M € N, m > M + 2 and
(©,u) € VL*]ZL all 7 € Weg 1, necessarily remain in the blocks A (0,¢) with ¢ €
{—=m+1,...,m—1}. Consequently, the dependence on x of ¥4 (0, u) is restricted to
those coordinates of x indexed by {—m +1,...,m — 1}. The following proposition
will be proven in Section 5.

Proposition 4.5. For every M € N and (©,u) € V;, there exists a ¥(0,u) € R
such that
lim  ¢Y(0,u) =¢(0,u) =9(0,u;a,8) w—a.s. (4.35)

L—oo
o *
(©w)evy

Moreover, for every (M, m) € EIGH the convergence is uniform in (©,u) € V3;™.

Uniform bound on the free energies. Pick (a,) € CONE, n € N, w € {A, B},
Q € {A, B}YoXZ and let W, be any non-empty subset of W, (recall (2.1)). Note
that the quenched free energies per monomer introduced until now are all of the
form

n = Llog Y e, (4.36)
TEWn,
where H,(m) may depend on w and  and satisfies —an < H,(r) < an for all
T € W, (recall that |8] < o in CONE). Since 1 < [W,| < [W,| < 3", we have

[thn| < log3 4+ a = Cye(a). (4.37)

The uniformity of this bound in n, w and  allows us to average over w and/or
or to let n — oo.

4.4.2. Variational formulas for the free energy in a single column. We next show
how the free energies per column can be expressed in terms of a variational formula
involving the path entropy and the single interface free energy defined in Sections 4.1
and 4.2. Throughout this section M € N is fixed.

For © € Vj; we need to specify I A0 and lp g, the minimal vertical distances
the copolymer must cross in blocks of type A and B, respectively, when crossing a
column of type ©.
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Vertical distance to be crossed in columns of class int. Pick © € Vim,M and
put

lh = 1{am>0y(n1 — bo) + Lian<oy (bo — no),
li = Lansoy(ny = nj-1) + Lan<oy (n—jp2 —n—j1) for je{2,... |kel},
Ukol+1 = L{ams0y (AL + b1 — nge) + Lan<oy (Nre+1 — ALl = by), (4.38)

i.e., l1 is the vertical distance between the entrance point and the first interface, I;
is the vertical distance between the i-th interface and the (¢ + 1)-th interface, and
l|ko|+1 is the vertical distance between the last interface and the exit point.

Recall that © = (x, AIL by, b1, x), and let [4 ¢ and I e correspond to the min-
imal vertical distance the copolymer must cross in blocks of type A and B, re-
spectively, in a column with disorder x when going from (0,bp) to (1, AIl + by),
ie.,

[ke|+1 [ke|+1
lao = Liamsop D Lilixtn, n=a1 + Lancoy Y Lilixm =4}
j=1 j=1
|ko|+1 ke |+1
lpo =Lamsoy Y Lilixm, =5y T Lian<oy D Llixn o=my-  (4:39)
j=1 j=1

Vertical distance to be crossed in columns of class nint. Depending on x
and AII, we further partition Vyine as into four parts

Vhint, 4,1,M U Vnint, 4,2,0 U Viine, B,1,1 U Vaint, B2, M (4.40)

where Vnint, A,z,Mm and Vnint, B,z,m contain those columns with label z for which all
the blocks between the entrance and the exit block are of type A and B, respectively.
Pick © € Vpint,ar- In this case, there is no AB-interface between by and AIl 4 by,
which means that AIl < ny if ATl > 0 and AIl > ng if AII < 0 (ng and ny being
defined in (4.15)).

For © € Vnint’A’l’M we have [p g = 0, whereas l4.¢ is the vertical distance
between the entrance point (0,bp) and the exit point (1, AIl 4 by), i.e.,

lae = 1{AH20}(AH —bo+b1) + 1{AH<0}(|AH| + by — bl) + 1{AH:0}|b1 — bol,
(4.41)
and similarly for © € Vpine, 51,1 we have obviously 14,6 = 0 and
lpo = 1{AH20}(AH —by+b1) + 1{AH<0}(|AH| +bo—b1) + 1{AH:0}‘b1 — b0|.
(4.42)

For © € Vnint,A,z,M, in turn, we have I g = 0 and [4 ¢ is the minimal vertical
distance a trajectory has to cross in a column with disorder x, starting from (0, by),
to reach the closest AB-interface before exiting at (1, AIl 4 b;), i.e.,

la,e = 1iam>0y (AIL — by + b1) + Lyan<oy (|AIL| 4+ bg — b1) + Liam=oy |01 — bol,
(4.43)

and similarly for © € Vnintg,M we have 4 ¢ = 0 and

e = 1{am>0} (ALl = bo + b1) + Lian<oy (AL +bo — b1) + 1ian=oy|b1 — bol.
(4.44)
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Variational formula for the free energy in a column. We abbreviate (h) =
(ha,hp,hz) and (a) = (aa,ap,azr). Note that the quantity h, indicates the frac-
tion of horizontal steps made by the copolymer in solvent z for x € {4, B} and
along AB-interfaces for x = Z. Similarly, a, indicates the total number of steps
made by the copolymer in solvent = for z € {A, B} and along AB-interfaces for
x=71. For (I4,lp) € [0,00)? and u >[4 + I + 1, we put

L(ZA,lB;u) = {(h),(a) S [0, 1]3 X [0,00)3: ha+hg+hzr=1,a4+ap+az=1u
aa>ha+la, ap > hp+lp, az > hz}.

(4.45)
For I4 € [0,00) and u > 1+ 14, we set
Loint,a2(la;u) = {(h), (a) € L(14,0;u): hg =ap = O}, (4.46)
Loint,a,1(la;u) = {(h), (a) € L(Ia,0;u): hg =ap =hz =az = 0},
and, for lg € [0,00) and u > 1 + I, we set
Lyint,B2(lp;u) = {(h), (a) € L(0,lg;u): ha =as = 0}, (4.47)

Enint,Byl(lB;u) = {(h), (CL) S E(OJB;’LL)Z hA =ap = hI = a7z = 0}

The following proposition will be proved in Section 5. The free energy per step
in a single column is given by the following variational formula.

Proposition 4.6. For all © € V), and u > te,

aa E(fﬁ, ;%) +ap [R(%, i) 4 ﬂ%a] +az ¢z(3%)

P(O,u;,8) = sup ; ’
(h),(a)EL(O;u) v
(4.48)
with
Low =L(alpiu)  ifOE Vi, (4.49)

E@,u = Enint,k,x(lk;u) Zf@ S Vnint,k,x,Mv ke {A7 B} and x € {17 2}

The importance of Proposition 4.6 lies in the fact that it expresses the free energy
in a single column in terms of the path entropy in a single column Kk and the free
energy along a single linear interface ¢z, which were defined in Sections 4.1-4.2
and are well understood.

4.5. Mesoscopic percolation frequencies. In Section 4.5.1, we associate with each
path m € Wy, a coarse-grained path that records the mesoscopic displacement of
7 in each column. In Section 4.5.2, we define a set of probability laws providing
the frequencies with which each type of column can be crossed by the copolymer.
This set will be used in Section 6 to state and prove the column-based variational
formula. Finally, in Section 4.5.3, we introduce a set of probability laws providing
the fractions of horizontal steps that the copolymer can make when travelling inside
each solvent with a given slope or along an AB interface. This latter subset appears
in the slope-based variational formula.
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4.5.1. Coarse-grained paths. For x € Ny x Z and n € N, let ¢, denote the center
of the block Ay, (z) defined in (2.3), i.e.,

and abbreviate
(No X Z)y, = {epn: x € Ny x Z}. (4.51)

Let W be the set of coarse-grained paths on (No x Z), that start at cg,, are self-
avoiding and are allowed to jump up, down and to the right between neighboring
sites of (Ng X Z)y, i.e., the increments of Il = (ﬁj)jeNO € W are (0,Ly),(0,—L,) and
(Lp,0). (These paths are the coarse-grained counterparts of the paths 7 introduced
n (2.1).) For Il € NU {oco}, let Wi be the set of l-step coarse-grained paths.
Recall, for m € W, the definitions of N, and (vj( ))j<N,—1 given below (4.9).
With 7 we associate a coarse-grained path Il e WN that describes how 7 moves
with respect to the blocks. The construction of II is done as follows: Ho = ¢(0,0)s
I moves vertically until it reaches c(,), moves one step to the right to c(q ),
moves vertically until it reaches C(1,01), WOVeS one step to the right to ¢ ,,), and

so on. The vertical increment of II in the j-th column is AH = (vj —vj_1)Ly (see
Figs. 4.12-4.14).

FIGURE 4.15. Example of a coarse-grained path.

To characterize a path 7, we will often use the sequence of vertical increments of
its associated coarse-grained path fL modified in such a way that it does not depend
on L, anymore. To that end, with every m € W,, we associate Il = (Hk)kN:”gl such
that IIp = 0 and,

1 -~
M = AIl; with AIl; = A, =0, Ne -1, (4.52)

Pick M € N and note that 7 € W, a if and only if |AIl;| < M for all j €
{0,...,N; — 1}

4.5.2. Percolation frequencies along coarse-grained paths. Given M € N, we denote
by M; (Vi) the set of probability measures on V. Pick Q € {A, B}oxZ [T € ZNo
such that Iy = 0 and |AIL;| < M for all i > 0 and b = (b;)jen, € (Q(o,1)". Set
Otraj = (5j)jen, with

E] = (Anj?bjab]’-‘rl)’ J € No, (453)
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let
X = {z e {1,2}": (Q, I +-),Ei,2;) € Var Vi € No}, (4.54)
and for x € Xy o set
@]‘ = (Q(],Hj + '), AHj7 bj7bj+1,.’L'j), j e Np. (455)
With the help of (4.55), we can define the empirical distribution

N-1
Z lio,—e}, N€EN,©€Vy. (4.56)
j=0

1
on (11 b, 2)(0) = N
In Appendix .2, we define in (C.7) a distance d that turns V,, into a Polish

space. Thus, the weak convergence in M (V) is metrizable and M (V) is Polish
as well.

Definition 4.7. For Q € {4, B}Yo*Z and M € N, let

Ry n = {pn(QIL b, ) with b = (b)) jen, € (Qo,1))™,
IT = (T1;) jen, € {0} x ZV: |AIL;| < M Vj € Ny,

T = (l'j)jGNg S {1,2}NO: (Q(], Hj + -),AHj7bj,bj+1,xj) € VM}
(4.57)
and let ’R%f be the set of all accumulation points of those sequences (pn)nen
satisfying py € R%{,N for all N e N, i.e.,

R, = ﬂ closure( U R?\/{,N)7 (4.58)
N’eN N>N’

both of which are subsets of M7 (V).

Proposition 4.8. For everyp € (0,1) and M € N there exists a closed set Ry y <
M1 (V) such that

R =R, p for P-a.e. Q. 4.59
M Ps

Proof: Note that, for every Q € {A, B}No*Z the set R, does not change when
finitely many variables in Q are changed. Therefore RS, is measurable with respect
to the tail o-algebra of 2. Since 2 is an i.i.d. random field, the claim follows from
Kolmogorov’s zero-one law. Because of the constraint on the vertical displacement,
Ry does not coincide with My (V). O

Each probability measure p € R, s is associated with a strategy of displacement
of the copolymer on the mesoscopic scale. As mentioned above, the growth rate
of the square blocks in (2.5) ensures that no entropy is carried by the mesoscopic
displacement, and this justifies the optimization over R, ps in the column-based
variational formula.

4.5.3. Fractions of horizontal steps per slope. In this section, we introduce ﬁp,M as
the counterpart of R, »s for the slope-based variational formula. To that aim, we
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define
£={(hao.hpo.h1.0)ocy, € (0,137 hae+hpe+hre =170, (4.60)
© — hye Borel Vk € {A, B, 1},
hio > 0if lo >0Vk € {A, B},
hie =1 if © € Vyiingk,1,Mm,
hzo + heo =1 if © € Vaingk,2,0 }-
With each p € Rp, p and h € € associate G, , € My (R UR4 U {Z}), defined by

Gonald) = [ hao1{j2e edr}p(ao), (4.61)
Vi ’
Gpn,(dl) = hp.e 1{ ,ZIB’@ € dl} p(dO),
‘_}M B,©
Gonz= | hzep(dO),
Vi

where lk,0/hke = 0 by convention if hy o = 0 for © € Var and k € {A, B}. The
set Ry in (2.14) is defined as

Rp.m = Closure {,6 e M (RyURLU{Z}): 3peRpm,h€&: p= G,,yh},
(4.62)
and as the M-restriction is relaxed the set R, in (2.14) is defined as
Rp=Um>1Rp u- (4.63)

For p € Ry, let pa, pp and pr denote the restriction of p to Ry, Ry and {Z},
respectively, as in (2.15). The measures pa(dl), pp(dl) represent the fraction of
horizontal steps made by the copolymer when it moves at slope [ in solvent A,
respectively, B. The number p7r represents the fraction of horizontal steps made by
the copolymer when it moves along the AB-interface.

4.6. Positivity of the free energy. It is easy to prove that for all p € (0,1), M € N
and (o, 8) € CONE the two variational formulas (that is the slope-based variational
formula stated in (2.14) but with the supremum taken over R, s instead of R,
and the column-based variational formula stated in (6.2) with the supremum taken
over Rp ar instead of Rp) are strictly positive, i.e.,

fla, B; M,p) > 0. (4.64)

To prove that the variational formula in (2.14) is strictly positive, we define
Phor € M1 (Ry UR, U{Z}) as

Pror = p*64,0(dl) + (1 — p)?6p,0(dl) + 2p(1 — p)dz. (4.65)

When moving along the z-axis, the pairs of blocks appearing above and below the
r-axis have density p? for type AA, density (1 — p)? for type BB, and density
2p(1 — p) for types AB and BA. Consequently, phoy belongs to R, and (2.14)
implies that, for any choice of v4,vp > 1, the variational formula in (2.14) is at
least
[p* +2p(1 = p)] va R(va, 0) + (1 = p)* vp [F(vs,0) + 252
[p* +2p(1 = p)lva+ (1 —p)*vp '

(4.66)
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Thus, it suffices to pick vg = 1, to recall that lim, ,. uk(u,0) = oo
(Lemma B.1(iv)), and to choose v large enough so that (4.66) becomes strictly
positive.

To prove that the variational formula in (6.2) is strictly positive, we can argue
similarly, taking both sequences (II;);en, and (b;);en, constant and equal to 0.

5. Proof of Propositions 4.5-4.6

In this section we prove Propositions 4.5 and 4.6, which were stated in Sec-
tions 4.4.1 and 4.4.2 and contain the precise definition of the key ingredients of the
variational formula in Theorem 6.1. In Section 6 we will use these propositions to
prove Theorem 6.1.

In Section 5.1 we associate with each trajectory 7 in a column a sequence record-
ing the indices of the AB-interfaces successively visited by w. The latter allows us
to state a key proposition, Proposition 5.1 below, from which Propositions 4.5 and
4.6 are straightforward consequences. In Section 5.2 we give an outline of the proof
of Proposition 5.1, in Sections 5.2.1-5.2.3 we provide the details.

5.1. Column crossing characteristic.

5.1.1. The order of the wvisits to the interfaces. Pick (M, m) € EIGH. To prove
Propositions 4.5 and 4.6, instead of considering (0,u) € V™, we will restrict to
(©,u) € Vi"ys- Our proof can be easily extended to (©,u) € V')

Pick (©,u) € V", recall (4.15) and set Jo.u = {N§ ..., N}, with
/\@’u =max{i >1:n; <u} and /\ﬂ@,u =0 if ng>uwu. (5.1)
./\/'éu =min{: <0: |n;] <u} and J\/’é,u =1 if |ng|>w.
Next pick L € N so that (©,u) € V| ), and recall that for j € Je,, the j-th
interface of the ©-column is Z; = {0,...,L} x {n;L}. Note also that 7 € Wg 1,
makes ulL steps inside the column and therefore can not reach the AB-interfaces
labelled outside {./\/'Cf)’u7 o ,./\/(;u}.
First, we associate with each trajectory @ € We , 1 the sequence J(m) that

records the indices of the interfaces that are successively visited by w. Next, we
pick m € We 4.1, and define 7, J; as

n =inf{i e N: 3j € Jo,: m € L;}, T €L, (5.2)

so that J; = 0 (respectively, J; = 1) if the first interface reached by 7 is Z
(respectively, Z1). For i € N\ {1}, we define 7;, J; as

Ti:inf{t>7'i,12 Ejej@,u\{Jl‘,l},Wi EIJ‘}, T, EI]i, (53)

so that the increments of J(m) are restricted to —1 or 1. The length of J(w) is
denoted by m(w) and corresponds to the number of jumps made by 7 between

neighboring interfaces before time uL, i.e., J(7) = (Ji)?l(f) with
m(r) = max{i € N: 7, <ulL}. (5.4)

Note that (©,u) € V"), necessarily implies kg < m(m) < u < m. Set

1mn

87’ = {-7 = (jl)::1 € ZN: jl S {Oa 1}7 ji+1_ji S {_1’ 1} V1 S 1 S T_l}a re Na
(5.5)
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and, for © € V, r € {1,...,m} and j € S, define
1 = 1{]'1:1}(711 — bo) + 1{j1:0}(b0 — ’/7,0),

li =|nj, —n; | forie{2,...,r}
b1 = Ljimhot1} (Mho+1 — AL =b1) + Lj ey (AIL+ b1 — g ), (5.6)
so that (I;)ic1,....r+1) depends on © and j. Set

Ao ={ie{l,...,r+1}: AbetweenZ; ,andZ;}, (5.7)
Bo;j={ie{l,...,r+1}: B betweenZ;, , and 7}, },
and set l(“)J = (lA7@7j,lB7@7j) with
a0 = Dicao,lis 1B.05 = Xicpe ,li (5.8)

For L € Nand (©,u) € Vi;"} ), we denote by Se 1. the set {J(7),m € We .1} Tt
is not difficult to see that a sequence j € S, belongs to Sg 1, if and only if it satisfies
the two following conditions. First, j,. € {ke, ke + 1}, since j, is the index of the
interface last visited before the ©-column is exited. Second, u > 14140+ B0 ;
because the number of steps taken by a trajectory m € We 4.1, satisfying J(m)=j
must be large enough to ensures that all interfaces Z;,, s € {1,...,r}, can be
visited by 7 before time uL. Consequently, Sg ., does not dcpend on L and can
be written as Sg,, = U;L;Se.u,r, Where

Sour =17 €S :jr €{ko ko +1},u>1+ls0; +Ilpe,} (5.9)
Thus, we partition We ,, 1, according to the value taken by J(m), i.e.,

Wour=J) U Wouri (5.10)

r=1 j€So,u,r

where We ., 1.,; contains those trajectories m € We ,, 1. for which J(7) = j.
Next, for j € Se ., we define (recall (4.33))

w . 1 w . . w .
wL(eauaJ) = ElogZL(Gvua])a ¢L(@,U’J) :E[¢L(@7u7])i’ (5'11)
with
Z8©,u,5) = Y, e, (5.12)
TeEWe u,L,j
For each L € N satisfying (0, u) € th . and each j € Se u, the quantity l4,0 ;L

(respectively, g e ;L) corresponds to the minimal vertical distance a trajectory
T € We,u,1,; has to cross in solvent A (respectively, B).

5.1.2. Key proposition. For simplicity we give the proof for the case (0, u) € ViﬁttnM.
The extension to (0,u) € V;

nlnt

Recalling (4.48) and (5.8), we define the free energy associated with ©,u, j as

s 1s straightforward.

w(@auaj) = qzbint(U,l@,j) (513)
w l w l — u!
_ sup wa k(3. 524) +up [R(3E, 524) + 552 +ur d(fr)
(h),(w)eL(lo,;;u) u

Proposition 5.1 below states that limyp_, . ¥ (0,u,j) = ¥(0,u,j) uniformly in
(©,u) € V"), and j € So v
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Proposition 5.1. For every M, m € N such that m > M +2 and every € > 0 there
exists an L. € N such that

[UL(©,u,5) —(0,u,j)| <e V(O,u) € Vi) 1y JESow, L>Le. (5.14)
Proof of Propositions 4.5 and 4.6 subject to Proposition 5.1. Pick € > 0,
L € Nand (©,u) € V"] ;- Recall (4.39) and note that 14(0©)L and p(0)L are
the minimal vertical distances the trajectories of We ,, 1, have to cross in blocks of
type A, respectively, B. For simplicity, in what follows the ©-dependence of 4 and
Ip will be suppressed. In other words, [4 and [p are the two coordinates of lg f

(recall (5.8)) with f = (1,2,..., |k@|) when ATl > 0 and f = (0,—1,...,—|ke|+1)
when AII < 0, so (4.48) and (5.13) imply
Yint (U, 14, lB) = Y(O,u, f). (5.15)

Hence Propositions 4.5 and 4.6 will be proven once we show that lim L_>

o wL( )
¥(O,u, f) uniformly in (6,u) € V"] ;. Moreover, a look at (5.13), (5.1 r)) and
(4.48) allows us to assert that for every j € Sg, we have ¥(0,u,j) < (0,u, ).
The latter is a consequence of the fact that [ — &(u,!) decreases on [0, u — 1] (see

Lemma B.1(ii) in Appendix A) and that
la=laes=min{lae;: j€Seu},
I =l1pe,r=min{lge,;: j € Sou} (5.16)
By applying Proposition 5.1 we have, for L > L.,
Yr(0,u,5) <Y(O,u, f)+e  V(O,u) € Vil v, Vi€ Sou,

¢L(®aua f) Z 1/’(67% f) — € V(@,u) € Viﬂ;;tfrzl,M' (517)
The second inequality in (5.17) allows us to write, for L > L.,
(O, u, f) —e <r(©,u, f) <Pr(0,u) V(©,u) € Vil ur- (5.18)

To obtain the upper bound we introduce

AL,E = {w: |wz(®7ua.]) - wL(@aUJ” S € V(@,U) € Vlnt L, M> vj € S®u}7
(5.19)
so that
Yr(©,u) <E[la; ¥7(0,u)] +E[1a, . ¥5(0,u)] (5.20)
< Cur(0) P(AT, ) + 5 E |14, 1085 e, € F0H O]

where we use (4.37) to bound the first term in the right-hand side, and the definition
of Ar . to bound the second term. Next, with the help of the first inequality in
(5.17) we can rewrite (5.20) for L > L. and (©,u) € V"] }; in the form

Yr(©,u) < Cup(a) P(AT ) + Llog | UML) Sp| 4+ (0, u, f) + 2e. (5.21)

At this stage we want to prove that limy, oo (AL’E) = 0. To that end, we use
the concentration of measure property in (D.3) in Appendix D with | = uL, I =
We u,j, N = eul, & = —al{w; = A} + f1{w; = B} for all i € N and T'(z,y) =
1{XLGy = B}. We then obtain that there exist C,C2 > 0 such that, for all L € N,
(e, )EthLMandje‘S@u,

P([95(0,u,5) — ¥1(0,u,j)| > ¢) < Cre 2= L, (5.22)



974 F. den Hollander and N. Pétrélis

The latter inequality, combined with the fact that |V;;:’L’ M| grows polynomialy in

L, allows us to assert that limp . P(Af, ) = 0. Next, we note that U], S;| < oo,
so that for L. large enough we obtain from (5.21) that, for L > L.,

Yr(0,u) <P(O,u, f)+3c  V(O,u) € Vil - (5.23)

Now (5.18) and (5.23) are sufficient to complete the proof of Propositions 4.5-4.6
in the case (©,u) € V,."},. As mentioned earlier, the proof for the case (0,u) €

Viint.ar 18 entirely similar. -

5.2. Structure of the proof of Proposition 5.1.
Intermediate column free energies. Let

Gt ={(L,©,u,5): (©,u) € V"] 1y, 5 € Soul, (5.24)
and define the following order relation.

Definition 5.2. For g,g: G} — R, write g < g when for every € > 0 there exists
an L. € N such that

9(L,0,u,j) <g(L,O,u,j)+¢ V(L,©,u,j) € Gyj: L > L.. (5.25)
Recall (5.11) and (5.13), set
wl(L7@au7j) :¢L(@aU,j)7 w4(La®7ua.j) :w(@aumj)? (526)

and note that the proof of Proposition 5.1 will be complete once we show that
1 < 4 and Py < 1. In what follows, we will focus on ¢, < 4. Each step of the
proof can be adapted to obtain ¥4 < 17 without additional difficulty.

In the proof we need to define two intermediate free energies 1 and 3, in
addition to 1; and 14 above. Our proof is divided into 3 steps, organized in
Sections 5.2.1-5.2.3, and consists of showing that ¥ < ¥ < 13 < 4.

Additional notation. Before stating Step 1, we need some further notation.
First, we partition We .,1.,; according to the total number of steps and the number
of horizontal steps made by a trajectory along and in between AB-interfaces. To

that end, we assume that j € Sg ,, with 7 € {1,...,m}, we recall (5.6) and we let
'D@7L7j = {(d,,tz):ill di e Nandt; €ed; + ;[ L+2Ng V1 <i<r+ 1},
Df = {(df ,t])i_: df eNand tf € d] +2Ny V1 <i<r}, (5.27)

where d;,t; denote the number of horizontal steps and the total number of steps
made by the trajectory between the (i — 1)-th and i-th interfaces, and dZ,t denote
the number of horizontal steps and the total number of steps made by the trajectory
along the i-th interface. For (d,t) € Do, j, (d*,t7) € DF and 1 <i < r, we set

To = 0 and

[ i—1
Vi=> ti+> tr, i=1...,m
j=1 j=1

1 [
Ti:th—&—Zt]I-, i=1,...,m (5.28)
j=1 j=1

so that V;, respectively, T; indicates the number of steps made by the trajectory
when reaching, respectively, leaving the i-th interface.
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Next, we let #: RN — RN be the left-shift acting on infinite sequences of real
numbers and, for u € N and w € {A,B}N, we put

u

Hy(B) = Z [5 Liw,=By — @ 1{%:,4}]- (5.29)

i=1
Finally, we recall that
U1(L,0,u,j) = o Ellog Z{' (L, ©, u, j)], (5.30)

where the partition function defined in (4.34) has been renamed Z; and can be
written in the form

Zi}J(L,@,u,j) = Z Z Al Bl Cl, (531)
(d,t)eDeo,L,; (dZ,t2)eDI

where (recall (5.7) and (4.5))

(i LL (i LLY L eTioiw
A = H et7' Hdi(di’ d; ) H et’ Hdi( i d; ) eri ’ (B), (532)
i€Ae,j 1€Bo,;
v
T 7z ,0Vi(w) (13
t; ¢ 4
By = H e af (d%)’
=1
Ci=1 . 1 .
(Sl df=r} { S a2, tF=ul

It is important to note that a simplification has been made in the term A; in
(5.32). Indeed, this term is not Fg,(-,-) defined in (4.2), since the latter does not
take into account the vertical restrictions on the path when it moves from one
interface to the next. However, the fact that two neighboring AB-interfaces are
necessarily separated by a distance at least L allows us to apply Lemma A.5 in
Appendix A .2, which ensures that these vertical restrictions can be removed at the
cost of a negligible error.

To show that 1 < ¥ < 3 < 14, we fix (M, m) € EIGH and € > 0, and we show
that there exists an L. € Ns such that ¢y (L, ©,u,j) < ¥rr1(L,0,u,j) + ¢ for all
(L,0,u,j) € G} and L > L.. The latter will complete the proof of Proposition 5.1.

5.2.1. Step 1. In this step, we remove the w-dependence from Z{’(L,©,u,j). To
that aim, we put

1
wQ(LaGauaj) = ElogZQ(L7®au7j) (533)
with
Zy(L,0,u,5) = Y > Ay By Oy, (5.34)
(d,t)eDe,L,; (d*,tT)eDL
where
t; LL t; LL B—a
A= [] ot (& ) 11 et (@0) % (5.35)
i€Ade,; i€Bo,;
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Next, for n € N we define
Acp = {30 <t,s<n:t>en, |H “(B)- 252 > st},
7(G) = da(h)] > ¢} (5.36)

By applying Cramér’s theorem for i.i.d. random variables (see e.g. den Hollander,
2000, Chapter 1), we obtain that there exist Cy(e),Ca(g) > 0 such that

Be.p = {Hogt,d,sgn: ted+ 2Ny, t > en,

P(|H “(B) - 559 > et) < Ci(e) e, 5N, (5.37)

By using the concentration of measure property in (D.3) in Appendix D with [ = ¢,
I'= Wf(é), T(x,y) = {(z,y) <0}, n=cet and §; = —al{w; = A} + f1{w; = B}
for all 7 € N, we find that there exist C7,Cy > 0 such that

P(|o5 “(L) — ¢a()| > e]) < Cre @, tdseN ted+2Ny. (538)

With the help of (4.37) and (5.30) we may write, for (L,0,u,j) € G},

V1(L,0,u,j) < Cus(a) P(AcimrUBemr) + 27 E[lgae  pe

e,mL

} logZ‘f(L,@,u,j)]

(5.39)
With the help of (5.37) and (5.38), we get that P(Ac ) — 0 and P(B: ) — 0
as L — oo. Moreover, from (5.31-5.36) it follows that, for (L,0,u,j) € G} and
we AL, L NBE v

e,mL

Z¥(L,0,u,7) < Zo(L,0,u,j) L. (5.40)

The latter completes the proof of ¥ < 1s.

5.2.2. Step 2. In this step, we concatenate the pieces of trajectories that travel in
A-blocks, respectively, B-blocks, respectively, along the AB-interfaces and replace
the finite-size entropies and free energies by their infinite-size counterparts. Recall
the definition of [4,0 ; and e, ; in (5.8) and define, for (L,©,u, j) € G}, the sets

Jorj = {(aA,hA,aB,hB)EN4: a4 €lao;L+ha+2No,ap € zB,@,jL+hB+2NO},
(5.41)
g7 = {(af,hf) eN?: of e hT 4+ QNO},
and put ¥3(L,0,u,j) = - log Z5(L, ©,u, j) with

Z5(L,©,u,5) = Y > A3BsCs, (5.42)

(a,h)€Te L5 (aT,hT)eTT

where

aa laeL ag lBo,L _
aA”(hA ha ) @B (hB he b
e e e 2

B3 = eaz(b(%)

As

)

[§]

)

Cs = Liastap+aT=ul} L{hathp+hT=L}- (5.43)
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In order to establish a link between 1 and i3 we define, for (a,h) € Jo,r,; and
(GI,hI) c jI,

P(a,h) = {(tvd) € DeyL,j: ZieA@ (tiad') = (aAahA) ZieB@J (tivdi) = (a’thB)}a
Quaz pry = {(t*,d*) e DE: Yi_ (¢, dF) = (aT, hT)}. (5.44)

Then we can rewrite Z5 as

Zy(L,0u,j) = Y. oG Y > A:Bs (5.45)

(a,h)eTe,L.j (aT,hT)eTT (t,d)EP(a,n) (tzvdz)eg(af,hf)
To prove that 1 < 13, we need the following lemma.

Lemma 5.3. For every n > 0 there exists an L, € N such that, for every
(L,O,u,j) € G} with L > L, and every (d,t) € Do, ; and (d*,t*) € DE satisfy-
ing S dy+ Sy dF = L and S 4+ Y o ul,

tii(4, BE) —nul < tifkg, (3, 5E) <t m(4, BE) +nqul i=1,...r+1,
(5.46)

26 —nul < g (Sr) < tho(tr) +nul i=1,....r.

Pmof By using Lemmas A.1 and C.2 in Appendix A, we have that there exists a
o € N such that, for L > L,, (u,1) € Hy and p € 1+ 2

Fr(u, 1) — R(u, 1) < n, 67 (1) — ¢ ()] < . (5.47)

Moreover, Lemmas 4.1, B.1(ii-ii), C.1(ii) and C.2 ensure that there exists a v,, > 1
such that, for L > 1, (u,l) € Hy with u > v, and p € 1 + % with > vy,

0<Fr(ul)<n,  0<¢r(p) <n. (5.48)

Note that the two inequalities in (5.48) remain valid when L = oco. Next, we
set 7, = 1/(2v,Cus) and L, = L, /r,, and we consider L > L,. Because of the
left-hand side of (5.47), the two inequalities in the first line of (5.46) hold when
di > rpL > I~/,7. We deal with the case d; < r,L by considering first the case
t; < nuL/2C\, which is easy because kg4, and & are uniformly bounded by Cly¢ (see
(4.37)). The case t; > nuL/2Cy gives t;/d; > uv, > v,, which by the left-hand
side of (5.48) completes the proof of the first line in (5.46). The same observations
applied to tZ,d? combined with the right-hand side of (5.47) and (5.48) provide

the two inequalities in the second line in (5.46). O
To prove that ¥ < 13, we apply Lemma 5.3 with n = ¢/(2m + 1) and we use
(5.35) to obtain, for L > L. /@m+1), (d,t) € De,r; and (df,t*) € DE,

Ay < H el ® (& ) v amis H etm(ff; ) L+2f::£1 (5.49)

i€Ae,; i€Beo,;

( )+ eull
By < H dI 2m+1

Next, we pick (a,h) € Jo 1., (a*,h%) € J*, (t,d) € P(a,n) and (tf,d%) € Q(aT,h1),
and we use the concavity of (a,b) — a&(a,b) and pu +— ¢ () (see Lemma B.1 in
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Appendix A and Lemma C.1 in Appendix C) to rewrite (5.49) as

la.e l L — 1)uL
_(aa lae; ap lBo,j B—a e(r+1) e(r+1)uL
( )+ aB “(hB hs )+ 5% an+ 2m+l = Age 2mtl

(5.50)

erul erul

I, T(a_
By <e® ? () +5085 — ByeZm+l,

Moreover, r, which is the number of AB interfaces crossed by the trajectories in
We u,j,L, s at most m (see (5.10)), so that (5.50) allows us to rewrite (5.45) as

ZQ(L, @,u,j) < ESUL Z Z 03 "P(a,h)| |Q(az,h1)| A3 Bg. (551)
(a,;h)€Te,L,j (aT,hT)eTT

Finally, it turns out that |P(q )| < (uL)®" and |Q,z jz)| < (uL)®". Therefore, since
r <m, (5.42) and (5.51) allow us to write, for (L,0,u,j) € Gj} and L > L, /a1,

Zy(L,0,u,j) < (mL)'%"Z3(L, 0, u, ). (5.52)
The latter is sufficient to conclude that 9 < 3.
5.2.3. Step 3. For every (L,0,u,j) € G} we have, by the definition in (4.45) of

L(la0.4,lB0,;u), that (a,h) € Jo,r,; and (CLI, hI) cJt satisfying artap+al =
uL and ha + hg + hT = L also satisfy

((%Av %), (% 5, hf)) € L(la0.5:lp.0,5:u)- (5.53)

Hence, (5.53) and the definition of ¢z in (4.48) ensure that, for this choice of (a, h)
and (aZ, h?),

A3Bj < ettvr(nlaeloe), (5.54)

Because of C3, the summation in (5.42) is restricted to those (a,h) € Jo,r; and
(a,hT) € J* for which as,ap,a? < uL and ha,hp,h* < L. Hence, the sum-
mation is restricted to a set of cardinality at most (uL)3L?. Consequently, for all
(L,0,u,j) € G}} we have

Z3(L,©,u,j) = Y > A4ByCy < (mL)PLP e hvrnlaeslse.s),
(a,h)EJ(—)YL)j (aI,hI)GJI
(5.55)

The latter implies that 13 < 4 since ¥4 = ¥z(u, la,o 4, IB,6,;) by definition (recall
(5.13) and (5.26)).

6. Column-based variational formula

To derive the slope-based variational formula that is the cornerstone of our anal-
ysis, we state and prove in this section an auxiliary variational formula for the
quenched free energy per step that involves the fraction of the time spent by the
copolymer in each type of block columns and the free energy per step of the copoly-
mer in a given block column. This auxiliary variational formula will be used in Sec-
tion 7 in combination with Proposition 4.6 to complete the proof of the slope-based
variational formula.

With each © € Vj; we associate a quantity ue € [te,o0) indicating how many
steps on scale L, the copolymer makes in columns of type ©, where tg is the



Phase diagram for a copolymer in a micro-emulsion 979

minimal number of steps required to cross a column of type ©. These numbers are
gathered into the set

By, = {(“9)®eVM ERVM: ug >te VO € Vi, © — ue continuous},  (6.1)

where the continuity in © is with respect to the distance dp; defined in (C.7) in
Appendix C.2. We recall Proposition 4.6, which identifies the free energy per step
Y(0,ue; a, B) associated with the copolymer when crossing a column of type © in
ug steps, and we recall that the set R, »s introduced in Section 4.5.2 gathers the
frequencies with which different types of columns can be visited by the copolymer.

Theorem 6.1. (column-based variational formula) For every («, 8) € CONE, and
p € (0,1) the free energy in (2.9) exists for P-a.e. (w,Q) and in L*(P), and is given
by

N(p,u
f(a,B;p) = sup  sup sup D(p ), (6.2)
M21 p€Rp,m (ve)oev,, € By, (p;u)
where
N(p,u) = /7 ue Y(0, ue; a, B) p(dO),
Vum
Dip.w) = [ ueplde) (6.3)
Vu

with the convention that N(p,u)/D(p,u) = —oo when D(p,u) = co.

The present section is technically involved because it goes through a sequence of
approximation steps in which the self-averaging of the free energy with respect to w
and € in the limit as n — oo is proven, and the various ingredients of the variational
formula in Theorem 6.1 that were constructed in Section 4 are put together.

In Section 6.1 we introduce additional notation and state Propositions 6.2, 6.3,
6.4 and 6.5 from which Theorem 6.1 is a straightforward consequence. Proposi-
tion 6.2, which deals with (M, m) € EIGH, is proven in Section 6.2 and the details
of the proof are worked out in Sections 6.2.1-6.2.7, organized into 5 Steps that link
intermediate free energies. We pass to the limit m — oo with Propositions 6.3 and
6.4 which are proven in Section 6.3 and 6.4, respectively. Finally, we pass to the
limit M — oo with Proposition 6.5 which is proven in Section 6.5.

6.1. Proof of Theorem 0.1.

6.1.1. Additional notation. Pick (M, m) € EIGH and recall that Q and w are in-
dependent, i.e., P = P, x Pg. For Q € {A, B}No*Z € {A, B}, n € N and
(a, B) € CONE, define

M mia,8) = Log 2% (Mym) with 258 (Mym)= 3 i ™,
TeEW, "y,

(6.4)

where W, contains those paths in W, y that, in each column, make at most mL,,

steps. We also restrict the set Ry, ps in (4.7) to those limiting empirical measures

whose support is included in V;[L, i.e., those measures charging the types of column
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that can be crossed in less than mL,, steps only. To that aim we recall (4.57) and
define, for Q € {A, B}*Z and N € N,

RSAZ’Z(, = {pn (1L b, z) with b= (b;)jen, € (Qo,1))™,
I = (IIj)jen, € {0} x Z": |AIl| < M Vj € No, (6.5)
@ = (25)jen, € {1,270 (Q, T + ), AL, bj, by, 25) € Vi)
which is a subset of Rg\)/[ ~ and allows us to define
R%jm — closure( Nn’eN UN>N R?/K,), (6.6)

which, for P-a.e. € is equal to R\, € Rp nm-
At this stage, we further define,

f(M,m;a,B) = sup sup Vip,u), (6.7)

PER [ (ue)oevm€Bym

where
Jor ue (O, ue;a, B) p(dO)
Vip,u) = To 0 7(d0) ; (6.8)

where (recall (4.28))

Bfg = {(U@)@EV}; € Rv;‘?l O ug € CO(V;Z,R), to <ug <mVeO e Vﬁ},
(6.9)
and where V,; is endowed with the distance dy; defined in (C.7) in Appendix C.2.
Let WZT/[ C W,y be the subset consisting of those paths whose endpoint
lies at the boundary between two columns of blocks, i.e., satisfies 7,1 € NL,,.

Recall (6.4), and define ZZ‘EnQ(M) and fi’f;’Q(M,m;oz,ﬁ) as the counterparts of
Z;‘:,’gn(M, m) and ff;?(M, m;a, 3) when W, is replaced by W, "y, Then there
exists a constant ¢ > 0, depending on « and S only, such that

Q - Q Q
Zy, (M,m)e chn < Zyyn (M,ym) < Zy " (M,m),

6.10
neN,we{A BN Qe {A BoxZ (6.10)

The left-hand side of the latter inequality is obtained by changing the last L,

steps of each trajectory in Wy, to make sure that the endpoint falls in L,N.

The energetic and entropic cost of this change are obviously O(L,). By assump-

tion, lim, oo Lp/n = 0, which together with (6.10) implies that the limits of
ff;LQ(M,m;a,B) and fi’;;“Q(M7m;a7ﬁ) as n — oo are the same. In the sequel

we will therefore restrict the summation in the partition function to W)'7, and

drop the * from the notations. 7

Finally, let

F2.(M,m; a, B) = Eu [f2(M, m; a, B)),
f17n(M7 m;a, B) = ]Ew,Q I:ff;?(M, m; o, ﬂ)],
and recall (2.8) and (4.11) to set

fHa, B) =Eu[f (. B)],  fUM;a,B) = Eu[f*(M;a, B)). (6.12)

(6.11)
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6.1.2. Key Propositions. Theorem 6.1 is a consequence of Propositions 6.3, 6.4 and
6.5 stated below and proven in Sections 6.3.1-6.3.3, Section 6.4 and Sections 6.5.1—
6.5.7, respectively.

Proposition 6.2, that is stated first is required to prove Proposition 6.3 and will
be proven in Sections 6.2.1-6.2.5.

Proposition 6.2. For all (M, m) € EIGH,

lim £ (M,m;a, 8) = f(M,m;c, ) for P — a.e. . (6.13)
n—00 ’
Proposition 6.3. For all M € N,
lim ff}(M;a,ﬁ) = sup f(M,m;a,8) forP—a.e . (6.14)
n— oo ’II’LZM+2
Proposition 6.4. For all M € N,
sup (M, m;a,) = sup sib Vipu).  (6.15)
m>M+2 pERP,M (ue)eevM GBVM

In the righthand side of (6.15), we recognize the variational formula of Theorem 6.1
and with By; =~ defined in (4.18).

Proposition 6.5.
limsup f9(a, 8) < sup lim f3(M;a,B) for P —a.e.Q. (6.16)

n—o00 M>11770

Proof of Theorem 6.1 subject to Propositions 6.3, 6.4 and 6.5. With
Propositions 6.3, 6.4 and 6.5 in hand, the proof of Theorem 6.1 will be complete
once we show that

lim |f<%a, B) — fHa,B)| =0 for P —a.e. (w,Q). (6.17)

n—oQ

To that aim, we note that for all n € N the Q-dependence of f<}(a, B) is restricted
to {Qm: x € Gn} with G,, = {O,...,ﬁ} X {fﬁ,...,ﬁ}. Thus, for n € N and
e > 0 we set ' '

Ac ={I£% (0, B) = f2 (e, B)] > ©)}, (6.18)
and by independence of w and 2 we can write
Po.a(Acpn)= ZTE{A,B}Gn Po.a(Acpn N{Qq, =T}

= Y repamen Pollfe T (@, 8) - £ (@, B)] > €) Pa{Qa, = T}).
(6.19)

At this stage, for each n € N we can apply the concentration inequality (D.3) in
Appendix D with ' =W,,, l =n, n =en,

& = —al{w; = A} 4+ 8 1{w; = B}, ieN, (6.20)

and with T'(z, y) indicating in which block step (x,y) lies in. Therefore, there exist
C1,C5 > 0 such that for allm € N and all T € {A,B}G" we have

Pw(\fr‘f’T(M,m;a,ﬁ) — fg(M,m;a,ﬁﬂ >e) < Cle_C?EZ"7 (6.21)

which, together with (6.19) yields Py, o(Acrn) < Cre=C25"n for all n € N. By using
the Borel-Cantelli Lemma, we obtain (6.17). O
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6.2. Proof of Proposition 6.2. Pick (M, m) € EIGH and («, 8) € CONE. In Steps 1-
2 in Sections 6.2.1-6.2.2 we introduce an intermediate free energy f??n(M, m;a, )
and show that

lim |7, (M, m;a, B) = f5,(M,m;, B)| =0 VQe{4,B} % (6.22)
n—00 ’ ’
Next, in Steps 3—4 in Sections 6.2.3-6.2.4 we show that
lim sup fé?n(M,m; a,B) = f(M,m;«, 8) for P —a.e. Q, (6.23)

n—oo

while in Step 5 in Section 6.2.5 we prove that
lim inf f??n(lw7 m; «, ) = limsup f?f?n(M, m;a, B) for P — a.e. . (6.24)
n—,oo

n—oo
Combing (6.22-6.24) we get
lim inf flﬂn(M,m; a, B) = lim sup flﬂn(]\/l,m; a,B) = f(M,m;«,B) for P—a.e. Q,
n—00 ’ ’

n—oo
(6.25)

which completes the proof of Proposition 6.2.
In the proof we need the following order relation.

Definition 6.6. For g,g: N? x CONE — R, write g < g if for all (M, m) € EIGH,
(a, B) € CONE and & > 0 there exists an n. € N such that

g(n, M,m;a,B) <g(n,M,m;«a,B)+¢ Vn > ne.. (6.26)

The proof of (6.22) will be complete once we show that fi* < f§! and f§! < f{?
for all Q € {A, B}No*Z We will focus on f{* < f§, since the proof of the latter
can be easily adapted to obtain f§! < fi2. To prove fi! < f§! we introduce another

intermediate free energy fS!, and we show that fi’ < f§! and f§! < f.

For L € N, let
DY ={E=(AIL by, b)) € {-M,.... M} x {1, 2,...,1}*}. (6.27)
For L, N € N, let

5%1\/ = {@traj = (Ei)ieqo,...N—1} € (DN
(6.28)
boo =+, boi =b1,i—1 V1<i<N-— 1},

and with each Oyaj € 52” N associate the sequence (Hi)ilio defined by Iy = 0 and
I = Y\~ ATL; for 1 < i < N. Next, for Q € {4, B}Yo*% and ©4,,; € D}, set

250 o = {x e {1,2H0 N QL T + 1), By ay) € Vi VO < i < N — 1},

(6.29)
and, for x € Xé\{r’:@, set
0, = (i, +),Z;,2;) for i€{0,...,N—1} (6.30)
and
ug{r:,fn = {u =(ui)ieqo,...N-1} € [1,m)N :
N-1 (6.31)
ui €te, + & VO<i< N -1, Z“F%}-
=0

Note that Ué{:’jf

\n

is empty when N ¢ [-2- 2],
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For m € W™, we let N be the number of columns crossed by 7 after n steps.
We denote by (ug(7),...,un,—1(m)) the time spent by 7 in each column divided
by L, and we set ug(m) = 0 and u;(m) = i;é ug(m) for 1 < j < N,. With these
notations, the partition function in (6.4) can be rewritten as

n/Ln
w,
ZEe (Mym) = > > > S AL (632
Ntk Bl x SEAGLT o WEULET,
with (recall (4.34))
T @) o -
Ay = H Zy, QI + ), Ziy 4, w). (6.33)
i=0

6.2.1. Step 1. In this step we average over the disorder w in each column. To that
end, we set

Fn(M,ms; 0, B) = Llog 23, 1, (M, m) (6.34)
with
n/Ly
28, (Mym) = ) > 3 Y 4, (6.35)
R R
where
N-1 @, N-1
a4 =1] oFo [log 20 (00, i+ 21 i,u)] _ [T evbnben@mir) Senms),
i=0 i=0

(6.36)

Note that the w-dependence has been removed from ng L, (M,m).

To prove that f{* < f5}, we need to show that for all € > 0 there exists an n. € N
such that, for n > n. and all Q,

E.[log 27 (M,m)] <log Z§, ;. (M, m) +en. (6.37)

. . Q
To this end, we rewrite Z,*,"; (M, m) as

n/Ly

Z48, (Mym) = > > > > Az%, (6.38)

N=n/mLy etraj 65%“1\] :I?EXC{\)/{;Z;)Q uelY M,m, Ln

etraj*z*”
where we note that
N-1 Ui Ln (g,
A _ I e [ QT +), B i)~ (L), Zii )| (6.39)
Az i=0

In order to average over w, we apply a concentration of measure inequality. Set

n/Ly

K, = U U U U {| log A1 — log Ag| > en}, (6.40)

N=n/mL, @ cDM M,m M,m,Lnp
; TEX, ueU,
traj S &, N O¢raj:Q? Oraj @
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and note that w € K¢ implies that Zfr’SL” (M,m) < ez, ; (M,m). Conse-

quently, we can write
E,[log 2% (M,m)] =E,[log Z{, (M, m)1c, 3] +Eu[log Z{7 (M, m)1ce, ]

<E.|log Zf;f?Ln (M,m) 1,y ] +1log Z32, 1 (M, m) + en.
(6.41)

We can now use the uniform bound in (4.37) to control the first term in the right-
hand side of (6.41), to obtain

E.[log 20 (M,m)] <log Zs, ;. (M,m) +en+ Cur(a) nPy,(K,).  (6.42)

Therefore the proof of this step will be complete once we show that P,,(C,,) vanishes
as n — 00.

Lemma 6.7. There exist C1,Cy > 0 such that, for all e > 0, n € N, N €

{7 7=} Qe {A, BNoXZ Oy, € DY v x€ Xé\{r’gﬂ and u € u@]‘fr’a’:ﬁ’;;,
P, (| log Ay —log As| > en) < 016_0252". (6.43)

Proof: Pick Oy € 5%“]\,, z € Xéﬂ:n and u € U@J\iﬁ’f,;, and consider the subset
I of W, consisting of those paths of length n that first cross the (€(0,-), =0, zo)
column such that my = (0,1) and mg,1, = (1,II; + b19)Ly, then cross the
(Q(1,-),E1, 1) column such that 73,1, +1 = (1 +1/Ly, Iy + b1,0) Ly, and 75,1, =
(2,13 + b11) Ly, and so on. We can apply the concentration of measure inequality
stated in (D.3) to the set I defined above, with [ =n, n = en,

& =—al{w; = A} +B1{w; = B}, i€N, (6.44)

and with T'(z,y) indicating in which block step (z,y) lies in. After noting that
E.(log A1) = log Ay, we obtain that there exist C7,C2 > 0 such that, for all

neN, Ne {3 .., 2} Qe {ABNX? Oy, € DY,z e X5 and
M,m,L,
u € Otraj,T,n’
P(|log Ay —log As| > en) < Cye 2" (6.45)
0

It now suffices to remark that

‘{(N, Otraj, T, u): N E{ -1 7=}, Otraj € 5%“1\,, T € Xé\{r:mu € Ué‘i;zwllz}’
(6.46)

grows subexponentially in n to obtain that f{* < f§* for all Q.

6.2.2. Step 2. In this step we replace the finite-size free energy v, by its limit .
To do so we introduce a third intermediate free energy,

f?n(M, mya, ) = E[% log Z;?,n,Ln (M, m)], (6.47)
where
n)Ln
ZSp (Mm) = > > > S A (6.48)
N=n/mln @u.eDM xeXgi;"a’;yQ ueué‘fr’;';jfz
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with
N-1
As = H i Ln (@I +), 85 w4 ui) (6.49)
i=0
For all €,
ﬁ _ Nl:f euwiln [wLn(Q(i,HiJr-),Ei,a:i,ui)*lb(Q(i,Hﬁ')Ei@iﬂu)} (6.50)
A3 7 |

and, for all i € {0,...,N — 1}, we have (Q(i,II; + -),Z;,2;,u;) € Vy;"™", so that
Proposition 4.5 can be apphed

6.2.3. Step 3. In this step we want the variational formula (6.7) to appear. Recall

(4.56) and define, for n € N, (M, m) € EIGH, N € {mL ,...,ﬁ}, Oraj € 152/11\,
]\/Im
and z € Xg | ")
®j :(Q(j,ﬂj—i-),Ej,a)‘J), j:O,...,N—L (651)
and
N
pe“a“x @ @ Z (0.7’—1,91'):(9,(—)')}’ (6.52)
and, for u € Ué\{:ffn,
N-1
HY(Opajy z,u) = Y u; (05, u;). (6.53)

Il
=]

J

In terms of these quantities we can rewrite Zéme” (M,m) in (6.48) as

n/Ly,

Q _ eln H? (Otrajz,u)
ZS)an(M, m) = E E E g " traj .
N=n/mLn ©4.; €D}y xeXot K “Euévfr: =

(6.54)
For n € N, denote by
Q Q M,m Q M,m,L,,
Nn ) G)traj n € DLH,NQ’ X@?raj oL Uy, € u@gaj o’ (655)

the indices in the summation set of (6.54) that maximize H®(O4ya;, 7, u). For ease
of notation we put

O = ENNG L wl =@ = @), (656)
and
Cp = |{(N,@traj,z,u): 657
- < -, Ouaj €D vy T € XG0 uE Ui Y|. (657
Then we can estimate
N1

1
f]ongnL (M,m) < Elogc,ﬁ—% >l p(eF,uf). (6.58)
j=0
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We next note that u — ut)(0,u) is concave for all © € V), (see Lemma C.4).
Hence, after setting

NS271 Nﬂ—l
=Y ler—eruj, dg= Y ljer—ey, O €V, (6.59)
j=0 =0

we can estimate
NS -1
> Lier—ey uf ¥(0F,uf) < vg (6, @) for ©€Vy:ds>1.  (6.60)
3=0
Next, we recall (6.52) and we set p,, = pgg 40> S0 that p, 1(©) = ds /NSY for all
© €V,,. Since {© € V,;: dy > 1} is a finite subset of V., we can easily extend
O — v /dy from {© € Vi df > 1} to V,; as a continuous function. Moreover,
Q
ZN"OA u? = n/L, implies that NS} fVﬁ 04 /dd pn,1(dO) = n/L,, which, together

traj,n’

Jj= J
with (6.58) and (6.60) gives

Llog zs, L, (M,m) < sup fVM +o(1), n — 0o,
” uEBym fgg ue pn(dO)

(6.61)

where we use that lim,, % logc,, = 0. In what follows, we abbreviate the first
term in the right-hand side of the last display by [,,. We want to show that
limsup,,_, ., + log Zgn7L7L(M, m) < f(M,m;a, (). To that end, we assume that
Llog %, ;. (M, m) converges to some ¢ € R and we prove that ¢ < f(M,m;a, 3).
Since (I,,)nen is bounded and Vj\m/f is compact, it follows from the definition of [,
that along an appropriate subsequence both l,, = loc >t and pp, = poc € R}, as
n — oo. Hence, the proof will be complete once we show that
loo < sup V(poo,u), (6.62)
uEBvﬁ
because the right-hand side in (6.62) is bounded from above by f(M,m;a, B).
Recall (4.21) and, for © € V,; and y € R, define
to if O (up(0,u))(te) < v,
mif 9, (up(0,u))(m) >y,

M,m
Ug ' (y) = 6.63
o (v) otherwise, with z such that ( )

Oy (uh(0,u))(2) 2 y = 0 (ut(0,u))(2),

where z is unique by strict concavity of u — u)(0,u) (see Lemma C.2).

I\

Lemma 6.8. (i) For all y € R and (M, m) € EIGH, O ug’m(y) is continuous
on (Vy1,dar), where dyy is defined in (C.7) in Appendiz C.
(it) For all (M, m) € EIGH and © € V,;, y — ug/lm(y) is continuous on R.

Proof: The proof uses the strict concavity of u — u (0, u) (see Lemma C.2).

(i) The proof is by contradiction. Pick y € R, and pick a sequence (0, )nen in

V,; such that lim, o ©, = O, € V,;. Suppose that ugnm(y) does not tend to

ugﬁom (y) as m — oo. Then, by choosing an appropriate subsequence, we may assume
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that lim,, o ug;m (y) = w1 € [te.,,m] with u; < ugo’om(y). The case u; > ugoom(y)
can be handled similarly.

Pick us € (u1, ug;om (y)). For n large enough, we have ug[Lm(y) <ug < ugj;om(y).
By the definition of u]\@/{’bm (y) in (6.63) and the strict concavity of u — u)(O,, u)
we have, for n large enough,

ug " (Y)¥(On, ug " (y)) — uzt)(On, u2)

O (utp(On, ) (ug ™ (y)) > —2= e (6.64)
ug. " (y) — uz
Let n — oo in (6.64) and use the strict concavity once again, to get
lim inf 9 (u (O, u)) (ug, ™ (y) > 9y (u(Ous, w)) (ug ™ (y)). (6.65)

n—oo

If ugﬁom(y) € (te.,,m], then (6.63) implies that the right-hand side of (6.65) is
not smaller than y. Hence (6.65) yields that 9 (u 1/)(®n,u))(u]\@4m(y)) >y for n
large enough, which implies that ug{im(y) = m by (6.63). However, the latter
inequality contradicts the fact that ugnm(y) <up < ugo’om(y) for n large enough.
If ugoom(y) =to_, then we note that lim,_,~ te, = te_ , which again contradicts
that te, < ug{lm(y) <ug < ug;om(y) for n large enough.

(ii) The proof is again by contradiction. Pick © € V]\TZ, and pick an infinite sequence
(Yn)nen such that lim,, o yn, = Yoo € R and such that ugl " (y,) does not converge

to ug/j "(yso). Then, by choosing an appropriate subsequence, we may assume

that there exists a u; < ug/[’m(yoo) such that lim,_, ug’m(yn) = u;. The case
up > ug/[ " (yso) can be treated similarly.
Pick ug,us € (ul,ug’m(yoo)) such that us < ws. Then, for n large enough, we
have
to < ug ™ (yn) < ug < uz < ug ™ (Yoo) < m. (6.66)
Combining (6.63) and (6.66) with the strict concavity of u — u(0,u) we get, for
n large enough,

Yn > OF (up(©,u))(uz) > 0, (u(©,u))(u3) > Yoo, (6.67)

which contradicts lim, —co Yn = Yoo- O

We resume the line of proof. Recall that p, 1, n € N, charges finitely many
© € V,;. Therefore the continuity and the strict concavity of u — ut(©,u) on
[teo,m] for all © € V,; (see Lemma C.4) imply that the supremum in (6.61) is
attained at some ul™ € By;m that satisfies uMm(@) = u@M’m (I,) for © € V. Set
um(@) = u]\@/[’m(loo) for © € V,; and note that (I,,),en may be assumed to be
monotone, say, non-decreasing. Then the concavity of u — u(©,u) for © € VE
implies that (u}™),,cx is a non-increasing sequence of functions on Vﬂ. Moreover,
V,; is a compact set and, by Lemma 6.8(ii), lim, o u™(0) = u2™(0) for
(NS VE Therefore Dini’s theorem implies that lim,,_, .o uf\l/[ M= u%vm uniformly
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on VAZL. We estimate

I — /, WM (©) (0, 1M (©)) oo (dO)
%

m
S /
Var

+| /V i ) 6(O.uM"(©)) pu(d0) [ w7 (8) (8, uk(©)) prc(a®).

M

() %(8, 1, () — uid ™ (0) %(©,uzg ™ ()| pn(dO) (6.68)

The second term in the right-hand side of (6.68) tends to zero as n — oo because,
by Lemma 6.8(i), © — uX™(0) is continuous on V,; and because p,, converges in
law to poo as n — 0o. The first term in the right-hand side of (6.68) tends to zero as
well, because (0, u) — u)(O,u) is uniformly continuous on V" (see Lemma C'.3)
and because we have proved above that '™ converges to u:™
This proves (6.62), and so Step 3 is complete

uniformly on V ]\n/; .

6.2.4. Step 4. In this step we prove that
lim sup fé?n(M,m; a,B) > f(M,m;a,3) for P—a.e. Q. (6.69)

n—oo

Note that the proof will be complete once we show that

lim sup f??n(M, m,a, B) > V(p,u) for p € Ry, u € 893- (6.70)

n—o0

Pick Q € {A, B}oxZ p ¢ ’Rp v and u € By m. By the definition of R;ZAZL, there
exists a strictly increasing subsequence (nx)reny € NV such that, for all & € N, there

exists an
ng ng
Nke{ } 6.71
ank_ Ly, ( )
a Of,; € DN{% ~, and a ¥ € X Q such that pp =% p2, . (see (6.52))
’ txa traj %
converges in law to p as k — oo. Recall (6.28), and note that
k .

= (Al bj, bﬁl) j=0,...,N—1, (6.72)

with AH;? € {—M7...,M} and bé? € (0,1] N Ll for 7 = 0,...,N,. For ease of
e
notation we define

OF = (Q(j,11F +),2%, %) with H?:ZAH;C, j=0,...,Ny—1, (6.73)

R

and
Ni—1

Vg = Nk/ ue pr,1(dO) Z Ugk, (6.74)
eV

where we recall that u = (u@)QEV;; was fixed at the beglnnlng of the section.

Next, we recall that lim,,_, L, /n = 0 and that L,, is non-decreasing (see (2.5)).
Thus, L, is constant on intervals. On those intervals, n/L,, takes constant incre-
ments. The latter implies that there exists an ny € N satisfying

Lﬁ;k < ﬁ and therefore 0 < wyLz, — 7y < 1. (6.75)
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Next, for j = 0,...,Np — 1 we pickbié? € (0,1] N % such that \@fbﬂ < A4
g
define

BN = (ATI}, 08,0k, ), ©F = (Q(, 105 + ), EF, 2], (6.76)
and pick
sf € t@T? + Tnn such that |s;’C — u@?| <2/Lz,. (6.77)
We use (6.74) to write
Nip—1 Nip—1
L, Z 8? =Lz, (Uk + Z (SéC — u@;c)) =Lz, (I+11I). (6.78)
§=0 j=0

Next, we note that (6.75) and (6.77) imply that | Lz, I —ng| <1 and | Ly, IT| < 2N.
The latter in turn implies that, by adding or subtracting at most 3 steps per

column, the quantities sé? for 7 =0,..., N — 1 can be chosen in such a way that
Np—1 L ~
>t 87 = nk/La,.
Next, set
E _ (5k\Ne—1 - pM k _ [ k\Ni—1 M,m,L5
Oaj = (E])j%0 € DLﬁk,Nka s" = (s]);%, € u@f : ggkkﬁkv (6.79)
braj’ ’

and recall (6.48) to get f§}(ng, M) > Ry with

—_— Nj—1 Y

R — Lz, HQ(@fraj,xk,sk) _ Zj:kO Sﬁw(@f’ 5?) B RE, 6.80

b Tk B SN gk - REC (6.80)
=0 j de

Further set /

R;C _ R?’E _ fv}:f; U 1/)(@,u®)pk(d@),
Rye va ue pr(dO)

and note that limy_, . R;f = V(p,u), since lilmkﬁC>O pr = p by assumption and

O — ue is continuous on V;;. We note that R, can be rewritten in the form

(6.81)

. R o e (), uer)
Ry = = Nl : (6.82)
de j=0 @j
Now recall that limg_,.onp = o0. Since Ny > ni/ML,,, it follows that

limy_,00 N = 00 as well. Moreover, Ny, < ny /Ly, with limy_, o 1y, = 0o. Therefore
(6.74-6.75) allow us to conclude that R% = 7,/La, = RE[1+ o(1)].

Next, note that H,s is compact, and that (0, u) — u(©,u) is continuous on
‘Hps and therefore is uniformly continuous. Consequently, for all € > 0 there exists
an 7 > 0 such that, for all (©,u),(©",u') € My satisfying [© — ©'| < 5 and
‘U - ul| < ,

lu (O, u) — u' (O ,u)| <e. (6.83)

We recall (6.76), which implies that dM(GT?, ©,) <2/Lz, forallj € {0,...,Ny—1},
we choose k large enough to ensure that 2/Lz, <1, and we use (6.83), to obtain

Ne—1 Ne—1

Ri, = 3 sho(OF sh) = > uerv(0F, uer) + T=RA+T,  (634)
Jj=0 j=0
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with |T| < eN. Since limy, o R, = V(p,u) and Z;V:’CJI ugk = v > ng/Ly, (see
(6.75)), if V(p,u) # 0, then |R;’fl‘ > Cst. ng /Ly, , whereas |T'| < eNy < eny/Lz,
for k large enough. Hence T = o(R.F) and

RE. RF[1+0(1
T L0 B N S (6.85)
RS, R [1+40(1)]
Finally, if V(p,u) = 0, then R}, = o(RF) and T = o(R.f), so that Ry tends to 0.
This completes the proof of Step 4.

6.2.5. Step 5. In this step we prove (6.24), suppressing the («, 8)-dependence from
the notation. For Q € {A,BYY*Z° n ¢ N, N € {n/mL,,...,n/L,} and r €
{—NM,...,NM}, we recall (6.28) and define

DY = {Ouas € DY Ty =1, (6.86)
where we recall that IIy = Z;V;Ol AII;. We set
f5h (M m,N,r) = Llog Z5, | (N,M,m,r) (6.87)
with
23, (N, Mymyr) = > Z S 4, (6.88)
SM,m,r Mo MomoLn

@traJEDL N meé\f’o o 'U,EZ/IOtlaJ

where Aj is defined in (6.49). We further set fg() =Eq(f5(-).

6.2.6. Step 6: Concentration of measure. In the first part of this step we prove that
for all (M, m, «, 8) € EIGH X CONE there exist ¢1, ca > 0 (depending on (M, m, a, 5)
only) such that, forallm € N, N € {n/(mLy),...n/Ly,}andr € {—-NM,...,NM},

c 5277,
Po (| f5L, (M, m) — fan(M,m)| >¢) <1 e Tn | (6.89)
025271

]P’Q(|f§?n(M,m,N,r) —fg’n(M,m,N,r)} > 5) <c e TIm .

We only give the proof of the first inequality. The second inequality is proved in a
similar manner. The proof uses Theorem D.1. Before we start we note that, for all
n €N, (M,m) € EIGH and Q € {A, B}foxZ_ 2 (M m) only depends on

. . n/Ly,
Cope CSp p with C2 = (Q(, ))z—/fn/L,, (6.90)
}

We apply Theorem D.1 with § = {0,...,n/L,}, with X; = {A, B} TInI
and with p; the uniform measure on X; for all ¢ € S. Note that \f?;(M, m) —
?;“L(M, m)| < 2Cyu¢(@)mEe for all i € S and all 4, Q5 satisfying CJQ;L = CJQ; for all
j #i. After we set ¢ = 2C,¢(a)m we can apply Theorem D.1 with D = ¢?L,,/n to
get (6.89).
Next, we note that the first inequality in (6.89), the Borel-Cantelli lemma and the
fact that lim, oo n/L, logn = oo (recall (2.5)) imply that, for all (M, m) € EIGH,

lim [f3n(M m) — fsn(M,m)| =0 for P — ae. Q. (6.91)

Therefore (6.24) will be proved once we show that
liminf f5,, (M, m) = limsup f3 (M, m). (6.92)
n—oo n—00



Phase diagram for a copolymer in a micro-emulsion 991

To that end, we first prove that, for all n € N and all (M, m) € EIGH, there exist
an N, € {n/mL,,...,n/L,} and an r, € {—MN,, ..., MN,} such that
lim [fg,n(M, m) — fg,n(M,m,Nn,rn)} =0. (6.93)

n—oo

The proof of (6.93) is done as follows. Pick e > 0, and for Q € {4, B}o*Z n ¢ N
and (M, m) € EIGH, denote by NS and r§! the maximizers of f§,(M,m,N,r).
Then

FR(Mym, N2 ) < f2(Mym) < 2log(2) + f2,(M,m, N2, 15, (6.94)

niTn LZ nsTn
so that, for n large enough and every Q,
0< fi?n(M, m) — fg?n (M,rmN,?,rg) <e. (6.95)
Forne N, N € {n/mLy,,...,n/L,} andr € {—NM,...,NM}, we set
ANy ={Q: (N1 7)) = (N, 1)} (6.96)

Next, denote by N,,, 7, the maximizers of P(4,, n,-). Note that (6.93) will be proved
once we show that, for all € > 0, | f5,, (M, m) — f3,(M,m, Ny,r,)| < € for n large
enough. Further note that P(A,, v, ,) > L2/n? for all n € N. For every 2 we can
therefore estimate

| fan(M,m) — fsn(M,m, Ny, r,)| <I+II+III (6.97)
with

I = [fsn(M,m) = f5},(M,m)], (6.98)

II = |f397n(M7 m) — f??,n(M7 m, N’I’Hrn)|a

11T = |f§?n(M7m7Nnarn) - f3,n(M7m7Nna7'n)"
Hence, the proof of (6.93) will be complete once we show that, for n large enough,
there exists an ). ,, for which I, 17 and IIT in (6.98) are bounded from above by
/3.

To that end, note that, because of (6.89), the probabilities P({I > ¢/3}) and

P({III > ¢/3}) are bounded from above by cie=¢25 /9L while

P({II > ¢c}) < P(AS ) <1—(L%/n?), neN (6.99)

N, Nn ,T'n

Since lim, oo n/Lylogn = oo, we have P({I,I1I,III < ¢/3}) > 0 for n large
enough. Consequently, the set {I,II,III < e/3} is non-empty and (6.93) is proven.

6.2.7. Step 7: Convergence. It remains to prove (6.92). Assume that there exist
two strictly increasing subsequences (ng)ren and (tg)reny and two limits Iy > Iy
such that limy_,o0 f3.n, (M, m) =l and limy_,o f3.4, (M, m) = [1. By using (6.93),

we have that for every k € N there exist Ny € {ng/mLy,,, ...,nk/Ly, } and i €
{=MNy,...,MNy} such that limy_,oo f3,n, (M, m, Ng,ry) = l3. Denote by
k,Q kQ  kQ ~M, M, M,m,L,
(Gtraj,max’ ‘Tmaxvumax) € DLn:}ka x X@kgl Q x u@k;ln ,zﬁ.‘,—{lx,nk (6100)

traj,max’ traj,max

the maximizer of H (Otraj; @, u). We recall that Oy, ¢ and u take their values in
sets that grow subexponentially fast in ny, and therefore

Lo Bo [HO(OF2 2k ul] =1, (6.101)

ng traj,max’ ““max’ “max

lim
k—o00
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Since Iy > l1, we can use (6.101) and the fact that limy_, o g /Ly, = 0o to obtain,
for k large enough,
Eo[HY O o oES ub)] + (8 — o) > 2 (1 + L5h). (6.102)
o

traj,max’ “*“max> “max

(The term 8 — « in the left-hand side of (6.102) is introduced for later convenience
only.) Next, pick ko € N satisfying (6.102), whose value will be specified later.
Similarly to what we did in (6.77) and (6.78), for Q € {A, B}Yo*Z and k € N we
associate with

N’“O — NM,TkD

kO,Q —— kO,Q kO7Q kO,Q 1
Otrajmax = (AT, 0057 0757°), 50 €Dy, M, (6.103)
and
ko,Q _ ko,Q Nk'[)_l M,m
T = (@577) ;2 € X@f?;j“mx,ﬂ (6.104)
and
M,m,L
ko, ko, 2\ Nig—1 Ly,
U = (U . el 6.105
e ( I )jzo Gfroa,js,?maxvzﬁpafynko ( )
the quantities
=kQ ko, 7K, Q2 7k, Q\Np —1 ~M,r,
@traj - (AH] 7bO,j abl,j )j=0 S DLtk’NkO (6106)
and
—kQ —k,Q\ Ny —1 M,m, Ly,
™t = (u;"")., Uu_ 6.107
(@7)i= CUgro e, (6.107)
(where * will be specified later), so that
72 ko, Q 1 5P ko0 1|7k koQ 2
|bo,j —bo; | = Ltkvlbl,j —by’; | < Ltk7}uj —u; | < R =0,...,Np,—1

(6.108)
Next, put E,? = L, Z;V:kg_l ﬂf’ Q, which we substitute for * above. The uniform
continuity in Lemma C.3 allows us to claim that, for k£ large enough and for all €,

_k,Q =k Q _kQ ko,Q ko,Q  ko,Q Io—1
[ar? p (8" ) — ule p(Oh o) | < g, (6.109)
where we recall that, as in (6.73), for all j =0,..., Ny, — 1,
=k, Q . 11ko,Q ko, 7RQ 7R Q k0
ST (Q(],Hjo +1), AT B2 pE gk ) (6.110)

@13_0,9 _ (Q(j7H/;07Q_|__)’ AH?U,Q pho 2 pho.Q x’?on).

0, » 715 7y

Recall (6.53). An immediate consequence of (6.109) is that

}HQ(@k,Q .fL'kO’Q ﬂk’Q) 7HQ(®]€O’Q xko,Q uko,ﬂ)| g Nko%. (6111)

traj’ *“max > traj,max’ *“max » “‘max
Hence we can use (6.102), (6.111) and the fact that Ny, < nyg,/Ln,,, to conclude
that, for k large enough,
—k,Q _ ng —
Eq[H" (O, waest T™9)] + (B — a) = £ (L + 271). (6.112)

°0

At this stage we add a column at the end of the group of Ny, columns in such a
way that the conditions b’f:%%fl = bg:%ko and b]f:%ko = 1/L, are satisfied. We put

=k, Q ko,Q Tk, Q  Tk,Q _ Tk, Q 1
ENe, = (AR 0g N, b, ) = (0,00, 1 q), (6.113)
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and we let @sra? € DM r'}‘\}k 41 be the concatenation of @traj (see (6.106)) and éﬁ,}?
We let 750 ¢ Xiwk o g be the concatenation of 502 and 0. We further let
traj’
R L R I (6.114)

M,m, L : _ e
and we let u"t € U@,Jng i’;o o g0 be the concatenation of @** (see (6.107)) and

traj ?

~k.Q ,Q
é“v + (Or Ny -1~ ) (6.115)

Next, we note that the right-most inequality in (6.108), together with the fact that
Nk() —1
Z u];-"’Q = Nko/ Ly, » (6.116)

allow us to asset that |5 — Liyny /Ly, | < 2Ng,. Therefore the definition of 55
n (6.114) implies that

30 = L, ko L +mst with M| < 2Ny, + 2Ly, . (6.117)
nko
Moreover,
HY (B4, 7% @) > H (0, 2k 2. 75%) + (8 — ), (6.118)

because u];\,Q < 2 by definition (see (6.115)) and the free energies per columns are

all bounded from below by (8 — «)/2. Hence, (6.112) and (6.118) give that for all
2 there exist a

Ak,Q S M, 1
Oiaj € DL, Nyyt1: D1Ne, = T (6.119)
M,m, L
an zF0-? ¢ X@ngﬂ and a u*% € Uﬁkn; af,fo o o such that, for k large enough,
traj’ th: » Sk
Q k. Ak ,Q k,Q ng lo—1
Eq[H(O,;, 7" )] > (l + Lzhy, (6.120)

Next, we subdivide the disorder €2 into groups of N ko +1 consecutive columns that
are successively translated by rg, in the vertical direction, i.e., @ = (Q1,Q2,...)
with (recall (4.13))

. . ](Nk +1)—1
Q= (26, (G =17k + )2 1) Ny 41)" (6.121)
and we let ¢i! be the unique integer satisfying
L P T L NIRRT (6.122)

where we suppress the 2-dependence of ¢i. We recall that

ti/Le,
Q @ raj,T,U
f3h (M m) = l log > 3 3 3ot wag @) |
N=ti/mLe,, @traJEDNI xGX@t o ue L{]g ™ Ltkt
traj: T» tk
(6.123)
~ ~ ~ 0
set ¢! = s,?l + 5,222 +--- 45, ", and concatenate
Ak,Q _ Q1 Ak,Qs AkQq, ~M
@traj,tot - (etraj ’etraj 1t @traj € DLfk,(Ik(Nk0+1)v (6124)
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and
~k,Q ~ko, Q1 ko, ~ko,Q
T = (FFoh gho2 | phoa) ¢ X0 o (6.125)
traj,tot
and
~k,Q ~k.Q ~k,Q ~k,Q M,m,L,
Ugy = (@0, a2 0P €Ugia’ ’Lkﬂtn. (6.126)

traj,tot  Ltot »

~k,Q

It still remains to complete ©F a:tot and ., such that the latter becomes an

element of ui”k’[f Lt’ikﬂ . To that end, we recall (6.122), which gives t; — f,? <

traj,tot’Ttot 10k

traJ tot?

§§3q’”‘+1. Then, using (6.117), we have that there exists a ¢ > 0 such that
ty — i < thkL”%. (6.127)
k0
Therefore we can complete @traJ tots Tror and U utot with
M M,m,L
Orest € DL%’QQ, Trest € X O Urest € U mt,mr:it,tk—t,?’ (6.128)
such that, by (6.127), the number of columns g,C involved in O,y satisfies gi? <
€Ny /Lin,, . Henceforth G)frfj tot? xfo? and utot stand for the quantities defined

n (6.124) and (6.126), and concatenated with Oyest, Trest and Upest SO that they
become elements of

M,m M,m,L;
Dy X2y coa 12
LtkMIk(ngJFl)Jrgil’ Ofr::j tot’Q7 ft:?] tot’iggvtlf? (6 9)
. <. . . Q ~k.Q ~k,Q
respectively. By restricting the summation in (6.47) to G)tmJ tots Lrop and Ugl:, we
get
Ly &= AkQ;
k Z Q; TR0 Gk
f3,tk (M7 m) > : Eq [ H (Gt aJJ , 0 '7) + H(@resta Trests urest) y
k =
(6.130)

where the term H (©yest, Trest, Urest) 1S negligible because, by (6.127), (tx — %v,?)/tk
vanishes as k — oo, while all free energies per column are bounded from below by
(8 — @)/2. Pick € > 0 and recall (6.117). Choose ko such that 2Ly, /nk, < /2
and note that, for k large enough,

e [Ltk (1~ &), Ly, 728 (1+5)} (6.131)

By (6.122), we therefore have

tkLnk 1 tkLnk 1 -
O < [Ltk"ko T4e? Ly mgg 1fa:| - [avb}' (6.132)

Recalling (6.130), we obtain
f37tk (M> m)

Ly
k Q; kQ ko, Ak,Q Q; kﬂ k0. k.5
> E HY% (@F% 3ho g ’H 08 k)

traJ t aj 'z

|
(6.133)

and, consequently,

L, N N L o
f3 th (M m) = W%EQ [HQ(@fr;i) ko, uk,Q):| _ ﬂ(b _ a)(NkD + 1)777‘77
(
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and, by (6.120),

la—ly

i+ _
foan(M,m) > 22— — (2 = ) (b— a)ymZ52. (6.135)

After taking ¢ small enough, we may conclude that liminfy_,o0 f3.4, (M, m) > 14,
which completes the proof.

6.3. Proof of Proposition 0.5. Pick (M, m) € EIGH and note that, for every n € N,
the set W™, is contained in W, ps. Thus, by using Proposition 6.2 we obtain

liminf £}, (M;, ) > sup liminf £ (M, m;a, )
T—00 ’ m>M+2 n—00 ’

= sup f(M,m;a,B8) forP—a.e. Q. (6.136)
m>M+2
Therefore, the proof of Proposition 6.3 will be complete once we show that

lim sup f{?n(M; a,8) < sup limsup flf?n(M,m; a,f) forP—a.e. Q. (6.137)
n—o00 m>M+2 n—oo
We will not prove (6.137) in full detail, but only give the main steps in the proof.
The proof consists in showing that, for m large enough, the pieces of the trajectory
in a column that exeed mL,, steps do not contribute substantially to the free energy.
Recall (6.27-6.32) and use (6.32) with m = oo, i.e.,

n/Ly
,Q
zogp My =>" > > A (6.138)
= N M, M,oc0,L
N=1 Ouwai €Dy weX@trzyﬂ u€e u@tr;’;mﬁl

With each (N, O, z,w) in (6.138), we associate the trajectories obtained by con-
catenating N shorter trajectories (m;);cqo,..., n—1} chosen in We, u;,L,, )icfo,....N=1}>
respectively. Thus, the quantity A; in (6.138) corresponds to the restriction of the
partition function to the trajectories associated with (N, ©gaj, z,u). In order to
discriminate between the columns in which more than mL, steps are taken and
those in which less are taken, we rewrite A; as AQAVQ with

AQ = H ZZ): (@i,ui), sz = H Z;j:i(@“uz), (6139)

1€V m i€Vim

with ﬂl == Z;;:IO Uk, @i = (Q(LHZ + ')7 E“:L‘l) and Iz = {aan7 N ,ﬂiJran — 1} for
i€{0,...,N—1}, with w; = (w;)ier for I C N, where {0,..., N —1} is partitioned
into
Vn UVan  with V., ={i€{0,...,N —1}: u; > m}. (6.140)
For all (N, O, z,u), we rewrite ‘~/u7m in the form of an increasing sequence
{i1,...,iz} and we drop the (u,m)-dependence of k for simplicity. We also set
U=uy +- -+ ;. , which is the total number of steps taken by a trajectory associ-
ated with (N, ©aj, ,u) in those columns where more than mL,, steps are taken.
Finally, for s € {1,...,k} we partition I;, into

Ji,Uds, with J;, = {ts, Ln, ..., (@, + M +2)L,}, (6.141)

Ji = {(@, + M +2)Ln+1,..., 0, 41Ln — 1},
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and we partition {1,...,n} into

JUJ with J=U"J;., J={1,....n}\J, (6.142)

so that .J contains the label of the steps constituting the pieces of trajectory exeeding
(M + 2)L,, steps in those columns where more than mL,, steps are taken.

6.3.1. Step 1. In this step we replace the pieces of trajectories in the columns
indexed in V,, ,,, by shorter trajectories of length (M +2)L,,. To that aim, for every
(N, Opraj, z,u) we set

Av= [ 270, M+2) (6.143)
i€Viu,m
with ©; = (Q(i,II; 4 -),Z;,1). We will show that for all ¢ > 0 and for m large
enough, the event
B, = {w: A} < A\Q €% for all (N, Ograj, z,u)} (6.144)

satisfies P, (B,) — 1 as n — oo.

Pick, for each s € {1,... ,%}, a trajectory 7 in the set Weg
nating them we obtain a trajectory in Wyy, satisfying w31, 1 = kLp. Thus, the
total entropy carried by those pieces of trajectories crossing the columns indexed
in {i1,...,iz} is bounded above by

. By concate-

igsWig Lin

152, We.. i, .| < |{m € War, s mar, 1 = KL} (6.145)

Since ﬂ/% > m, we can use Lemma A.2 in Appendix A to assert that, for m large
enough, the right-hand side of (6.145) is bounded above by e™.

Moreover, we note that an uL,-step trajectory satisfying g1, 1 = EL,L makes
at most EL,L + @ excursions in the B solvent because such an excursion requires
at least one horizontal step or at least L, vertical steps. Therefore, by using the
inequalities kL, < n/m and u < n/L, we obtain that, for n large enough, the sum
of the Hamiltonians associated with (m1,...,7;) is bounded from above, uniformly
in (N, Oraj, v, u) and (71, ..., 7%), by

% wr; Qs +-)

ig?

b H (rs) < max{Y,, &: [ € U "En ), (6.146)

with &, , defined in (F.1) in Appendix E and & = Bl,,—ay — aly,,—py for i € N.
At this stage we use the definition in (E.3) and note that, for allw € Qi{ﬁ{(a_m/zﬁ,
the right-hand side in (6.146) is smaller than en. Consequently, for m and n large

enough we have that, for all w € Qi{yﬁn’(afﬂ)/zﬂ,

Ay <e* forall (N, Otraj; T, ). (6.147)
Recalling (4.37) and noting that kL, < n/m, we can write
12[2 > o R(M+2)Ly, Cug() > e—annTQ Cuf(a)’ (6.148)

and therefore, for m large enough, for all n and all (N, ©¢yaj, z,u) we have 112 >
e ",
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Finally, use (6.147) and (6.148) to conclude that, for m and n large enough,
Qi{f;(a*")““ is a subset of B,,. Thus, Lemma E.l ensures that, for m large

enough, lim,, . P,(B,) = 1.

6.3.2. Step 2. Let (w;);en be an ii.d. sequence of Bernouilli trials, independent of
w, Q. For (N, Oaj, x,u) we set U = ﬂffl;(M +2). In Step 1 we have removed uL,,
steps from the trajectories associated with (N, ©¢aj, 2, u) so that they have become
trajectories associated with (IV, @traj,a:/,u). In this step, we will concatenate the
trajectories associated with (N, Oyyaj, 2 ,u) with an GL,-step trajectory to recover
a trajectory that belongs to W,

For Q € {A,B}o*2 t N €N and k € Z, let

1
PX(N, k)( = 21{Q(N+]k A (6.149)

be the proportion of A-blocks on the kth line and between the N*" and the (N +
t — 1) column of Q. Pick n > 0 andj € N, and set

U U U {PANk: t) < g} (6.150)

N=0k=—jt>nj

By a straightforward application of Cramer’s Theorem for i.i.d. random variables,
we have that >,y Pa(Sy,;) < co. Therefore, using the Borel-Cantelli Lemma, it
follows that for Pg-a.e. §, there exists a j,(2) € N such that Q ¢ S, ; as soon as
J > ju(€). In what follows, we consider n = s/am and we take n large enough so
that n/Ly > jojam(£2), and therefore 2 ¢ S »

Pick (N,0,z,u) and consider one traJect%ry 7, of length wL,, starting from
(N, Iy + by)L,, staying in the coarsed-grained line at height Iy, crossing the
B-blocks in a straight line and the A-blocks in mL,, steps. The number of columns
crossed by 7 is denoted by N and satisfies N > u/m. If uL, < en/a, then the
Hamiltonian associated with 7 is clearly larger than —en. If @L,, > en/a in turn,
then

BN @) > oL, N[1 - PE(N,y)(N)]. (6.151)
Since N < n/L,, [y

= to obtain
In

< n/L, and N > en/(amL,), we can use the fact that

PN, ILy)(N) > £. (6.152)
At this point it remains to bound N from above, which is done by noting that
N[mP(N,IIy)(N) + 1 - PH(N,TIN)(N)] =@ < - (6.153)

Hence, using (6.152) and (6.153), we obtain N < 2n/pmL, and therefore the right-
hand side of (6.151) is bounded from below by —«(2 — p)n/pm, which for m large
enough is larger than —en.

Thus, for n and m large enough and for all (IV,©,z,u), we have a trajectory 7
at which the Hamiltonian is bounded from below by —en that can be concatenated

with all trajectories associated with (NN, ©,z’,u) to obtain a trajectory in W, .
Consequently, recalling (6.141), for n and m large enough we have

Ay <2V (Mym) Y (N, 0, z,u). (6.154)
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6.3.3. Step 3. In this step, we average over the microscopic disorders w,w. Use
(6.154) to note that, for n and m large enough and all w € B,,, we have

n/Ln
w, 0 den (wy,©),Q
722y < Sy S S 240 P00 m). (6.155)
— = M, M,00,Ln
N=1 Ouaj€DY a:e)(@trz?Q uel’[@tr:,z,n

We use (D.3) to claim that there exists Cy,Cy > 0 so that for all n € N, all m € N
and all J,

IE”W;(

We set also

Dn:ﬂ{

(N7etraj ,T;U)

Llog Z(wgn a)"Q(M, m) — f?n(M, m)’ > E) < Cpe@n, (6.156)

n

Liog 28722 (M,m) — f2,(M, m)‘ < e}, (6.157)

recall the definition of ¢, in (6.57) (used with (M, 00)), and use (6.156) and the
fact that ¢, grows subexponentially, to obtain lim,, o Py, 5 (Dg) = 0. For all (w, )
satisfying w € B,, and (w,w) € D,,, we can rewrite (6.155) as

Z:;?n (M) <ecp en i (Mom)+5en, (6.158)

As a consequence, recalling (4.37), for m large enough we have

log ¢,

1
f2(0M;0,8) < B(BLUDE) Cusla) + —2 4+ ~E (11,00, (nf {2, (M, m) +5en) ).
(6.159)
Since P(BLUDS) and (log ¢,,)/n vanish when n — oo, it suffices to apply Proposition
6.2 and to let &€ — 0 to obtain (6.137). This completes the proof of Proposition 6.3.

n

6.4. Proof of Proposition 0./. Note that, for all m > M +2, we have R}"); C Rp m-

Moreover, any (ue)g evm € Bv;; can be extended to V) so that it belongs to By .
Thus,

sup  f(M,m;a,8) < sup  sup V(p,u). (6.160)
m>M+2 PERp, M (u)EBVM

As a consequence, it suffices to show that for all p € R, s and <u@)(~)eVM € By .

V(p,u) < sup sup sup V(p,u). (6.161)
m>M+2 pER;’fM (U)EBVJT\ZL
If [, uep(dO®) = oo, then (6.161) is trivially satisfied since V(p,u) = —oc.

Thus, we can assume that p(Vys \ Das) = 1, where Dy = {© € Vy: xo €
{AZ B%} zg = 2}. Since va ue p(dO) < oo and since (recall (4.37)) ¥(O,u) is

uniformly bounded by Cys(a) on (O,u) € VX/[, we have by dominated convergence
that for all € > 0 there exists an mg > M + 2 such that, for all m > my,

fv; ue (0, ue)p(dO)
fvg uep(dO)

Since p(Var \ Dy) = 1 and since UmZMHV]\TZ = Vu \ Dy, we have
lim,,— 00 p(VE) = 1. Moreover, for all m > myg there exists a p,, € R}y, such

Vip,u) <

+ (6.162)

N|m

that P = pm + Doy, With py, the restriction of p to Vﬂ and p,, charging only those
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O satisfying xe = 1. Since all © € V;; with zg = 1 also belong to Vﬁ”, we can
state that p,, only charges VJQ;[ "2 Therefore

ff;; U@w(@a u@)p(d@) + fv%*z U@w(@, u@)pm(d@)

Since © — ug is continuous on Vjy, there exists an R > 0 such that ug < R for

V(pm,u) = (6.163)

all © € Vﬁ”. Therefore we can use (6.162) and (6.163) to obtain, for m > my,

V(Brs) = (V(p,u)— 5) Jy; vor(d9) ~RCutla) (1-p(V3)
pHHu - p7u 2 fvaGP d@ +va+2 U@pm(d@) uf (& p M)
(6.164)

The fact that ﬁm(vﬂj\jw) = p(Var \ V) for all m > mgy implies that

lim,, o0 B (Vart2) = 0. Consequently, the right-hand side in (6.164) tends to
V(p,u) — /2 as m — oo. Thus, there exists a my > myg such that V(py,,,u) >
V(p,u) —e. Finally, we note that there exists a mg > mj +1 such that ug < mq for
all © € V,,", which allows us to extend (ue)eegml to Vy;~ such that (“@)669;'}2 €
Bgﬁg. It suffices to note that py,, € Rm}w - ’Rp 2, to conclude that

Vip,u) < f(M,ma; a, B) + €. (6.165)

6.5. Proof of Proposition 6.5. It remains to remove the M-truncation from the
variational formula in Proposition 6.4. To that aim it suffices to show that
limsup (e, 8) < sup limsup f¢(M;a,3) for P —a.e.Q. (6.166)
n—00 M>1 n—oo

The proof of (6.166) is similar to that of (6.137) in Section 6.3. In the latter, the
pieces of path inside the columns where too many steps (> mL,) were taken were
replaced by a shorter path. However, the mesoscopic strategy of displacement was
not changed. This is a major difference with the proof of Proposition 6.5 below,
since we need to compare the contribution to the partition function of groups of
trajectories that do not follow the same mesoscopic strategy of displacement.

For m € W,,, we recall that N is the number of columns crossed by 7 after n
steps. We recall (6.138-6.142) and use the same notations with M = oo to rewrite
the full partition function as

n/Ln
= E E E E A (6.167)
N=16,,,,€D5 \ T€X5, 7 o ue ug;™ Ln.

We pick N € {1,...,n/L,}, and with each Oaj € Df:,N and z € Xeofm‘fﬂ
we associate an auxiliary mesocopic strategy denoted by étmj € 5%4 yand T €
X(:)Afjo 0 that is built as follows. Let i; be the index of the first column in which
the mesoscopic displacement of Oyraj is strictly larger than M, i.e., (|ALL;, | > M).
Until ¢4, both strategies (Oyraj, ) and (Ouaj, T) are equal, i.e.,

O = (Q0, T + ), i, &) = (Q3, I + ), Ei, ) = ©;  fori <ip —1.  (6.168)

The mesoscopic displacement AlIl;; of O,,; is large and @)traj starts making meso-
scopic steps of size M to catch up with Oy, as soon as possible. This takes r; € N
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columns indexed in {i1,...,43 + 1 — 1} for which |Aﬁl| = M,Z; = 1, except for
the very last column (i = i; + r; — 1), which is used to end the catch up be-
tween ((:)traj,f) and (Oiraj, ). We note that there may be other columns among
{i1,...,41 +r1 — 1} in which the mesoscopic displacement of Oy,j is > M.

After (étraj,f) catches up with (Oyraj, ), it remains equal to (Oyraj, ) until a
new column appears (indexed by is > i1 +71) with a large mesoscopic displacement,
ie., |AIL;,| > M. Thus, 0, =0, foric {i1+71,...i2—1}, and so on. The resulting

M 00

O¢raj and T belong to ﬁﬁ/[nN and Xé , respectively, and ©; = ©;, except on

traj,

k groups of consecutive columns denoted by {iq,... i1 +7r1 — 1}, ..., {ik, ..., ix +
r — 1} and referred to as the catch-up columns in what follows. For simplicity, the
dependence in Oy of k,41,71,. .., 9, 7 is omitted.

We can give a crude upper bound on the number of columns on which (:)traj
differs from (:)tmj. The sum of the absolute values of the large mesoscopic jumps
(i.e., Zf\;l |AIL|1{|AIL;| > M}) performed by ©yaj indeed cannot exceed n/L,,.
Moreover, the number of columns in which the mesoscopic displacement is larger
than M/2 is bounded above by 2n/ML,, and in each catch-up column where
the mesoscopic displacement of Oy.nj is smaller than M /2, (:)traj scores at least
M /2 blocks in its race against ©y,j. Therefore, the number of catch-up columns
r1 4 -+ + 1 is bounded above by 4n/ML,.

In order to discriminate between the catch-up columns and the columns on which
Otraj and étraj are equal, we keep the notations of (6.140-6.142) and we rewrite
A1 as A2AV2 with

Ap = H Z7(Onw), Ay = H A CIR) (6.169)

1€V, m iE‘N/r[,M

where {0, ..., N —1} is partitioned into VH,M U Vi, v and ‘7H7M =Ur_ {ig, ... 05+
rs — 1} gathers the indices of the k groups of catch-up columns.

We also set 4s = u;, +- - -+ Ui 4+r,—1, which is the total number of steps taken by
a trajectory associated with (IV, Oy, ¢, ©) in the s-th group of catch-up columns.
Finally, for each j € XN/rL M we let v;L,, be the minimal number of steps that are
required to cross a column of type (:)j. Even though it is not necessarily true that
v; <y forall j € ‘7H7M, it is true by construction that for s € {1,...,k} we have
Us > Vi, +++Vi,4r,—1 = Vs. Foreach s € {1,...,k} and each t € {0,...,r, — 1},
we define

Jigpr = {(@i, +vi, + -+ vi,44-1)Ln, (W, +vi, + - +vi,4¢) Ly, — 1}, (6.170)

so that we partition I;, U---UI; 4, into

K UK, with K,={u;,Ln,...,(@%, +vi, + + Vi, 4r.—1)Ln}, (6.171)
K, = {(W;, +vi, + - +Viy4r.—1)Ln + 1, ..., Wi+, Ly, — 1},
and we partition {1,...,n} into
TUT with T=U"_ K,, T={1,....n}\T. (6.172)

6.5.1. Step 1. In this step, we aim at replacing the Hamiltonian in the catch-up
columns by an auxiliary coarse-grained version of the Hamiltonian, which simply
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assigns an energetic penalty % to each monomers placed in solvent B. To that
aim, for x € {A, B}? and 7 € W 1 such that 7,1 = L, we set

wl
HY) (7)) = boa Z 1{><<Lm,1,m> = B}. (6.173)
i=1

and we recall that X(Lm_l,m) denotes the label of the block the step (m;—1, ;) lies
in. With the help of (6.173) and recalling (4.34), we define the partition function
associated with those trajectories crossing a block-column of type © = (x,E, x) in
ul steps as

Zi©uw =5 oMl (6.174)

TEWe u,L

and we note that Z (0, u) does not depend on the microscopic disorder wcanymore.
Thus, we can set

I Z..(©:w). (6.175)
iE\N/r[,]M

In the rest of this proof, we will often state results that hold uniformly on

(N, Otraj, x,u) without recalling that N € {1,...,n/L,}, Otaj € ﬁ%‘:ﬁN, T €

ng OOQ and u € Yo Ln

@traj »T,M T
Our aim is to show that, for all £ > 0, M large enough and Q € {A, B}"oXZ the
set

Bl ={w: Ay < Aye for all (N, Oag, a,u)} (6.176)

satisfies lim,, oo ]P)W(B}L,M) = 1. We consider a given (N, Oy.j, z,u), and we set
w = Uy + -+ us. We then pick for each i € XN/H,M a trajectory m; in the set
We, u:,L,- By concatenating these trajectories, we obtain a trajectory 7 € Wyy,,
satisfying 7gr, 1 = (1 + -+ + r%)L,. The difference between the Hamiltonian
associated with 7 in A5 and the one associated with 7 in A, equals

Zs 1 erl :IlJr:TLfL(Zﬁ%HZﬁH_.)(7Tis+x) — ff,fz(ijanLn”H(mﬂ) (6.177)
Either 7 takes in B a number of steps that is < en/(2a) and the Hamiltonian
difference in (6.177) is bounded above by en, or the number of steps in B is larger
than en/2a. In the latter case, since Ty, 1 = (11 + - -+ + %)Ly, ™ makes at most
(r1+---+rk)Ly, + 7 excursions in B because each such excursion requires at least
one horizontal step or at least L,, vertical steps. Therefore, by using the inequalities
(ri+--4+7r) Ly, < 4n/M and ©w < n/L,, we can claim that, as soon as L,, > M,
7 does not perform more than 5n/M excursions in B, and hence

3_1 i o0 Qs+, I g at) 77 Qis+x, I, 4o+
ZS 1 ZT UL&+:L1L7L7L (772 ‘+x) - Huib(irj_gcn,Ln+ )(ﬂ-is"!‘if) (6178)
<max{zlel (El— ) I€U5n/M5 },

with &, , defined in (F.1) in Appendix F and & = B1,,—ay — aly,,—py for i € N.

At this point we use the definition in (F.3) and note that, for all w € QZ/ ]6[7; 5

the right-hand side in (6.178) is smaller than en. Consequently, for M and n large
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enough we have that, for all w € QZ/?\;‘/’E,
AVQ en
— <e for all (N, Oaj, z,u). (6.179)
Ao '

It remains to use (6.179) and (6.176) to conclude that, for M and n large enough,

Qe/Za,e
n,M/5

lim,, o0 Pw(Bi7M) =1, which completes Step 1.

is a subset of B}% - Thus, Lemma E.1 ensures that, for M large enough,

6.5.2. Step 2. In this step we further simplify the expression of A, introduced in
(6.175) by setting

Ay= JJ = mm@dln (6.180)
iE\?n,M

where Mp(0;) is the number of B-blocks located in between the entrance block
and the exit block that have to be crossed entirely in the vertical direction by any
trajectory that crosses a block of type ©;. We note that Mp(0;) only depends
on AIl; (the mesoscopic displacement in the column) and on the disorder in the
column seen from the entrance block Q(7, II; +-). Our aim is to show that, for € > 0
and for M and n large enough, we have for all Q € {A, B}No*Z that Ay < Age™

uniformly in (N, 0, z,u).
For a given (N, ©, x,u) we pick, for each ¢ € ‘7H7M, a trajectory m; € We, ;. L., -
We recall that 8 — a < 0, since (o, 8) € CONE. In A, the Hamiltonian associated

with (), . 18 bounded above by
S BT (m) < 0L, Y Mp(6y) (6.181)
’L‘G";VHYM 'L.G";H,I\/I

because, for each i € VH, M, m; must cross vertically at least 915(0;) blocks of type
B. In the right-hand side of (6.181), we recognise the exponential factor in (6.180),
and therefore this step will be complete once we control the entropy carried by
those pieces of trajectories that cross the columns indexed in Vi ar. To that aim,
we recall that w = @; + --- + us and we note that, by concatenating the paths
(Wi)ieVH,M, we obtain a trajectory @ € Wy, satisfying mgr, 1 = (r1+ -+ +7%)Ly.
Thus,

it Woiusrnl < H{m€War, s map, 1= (r+ -+ i) Ln}

and either u < en/log(3)L, and the right-hand side in (6.182) is smaller than e,
or u > en/log(3)L, and the crude bound r; + --- + rp < 4n/ML,, allows us to
write w/(r1 +...,7r%) > Me/(4log(3)), and we can use Lemma A.2 in Appendix A
to assert that, for M large enough, the right-hand side of (6.182) is bounded above
by e".

. (6.182)

6.5.3. Step 3. In this step, we link each mesoscopic strategy Oyra; to its auxiliary
counterpart Oy,,j by replacing Az in (6.180) by

A= [ & me0tn, (6.183)

i€‘7n,M
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As in the previous step, 915(©;) is the number of B-blocks located in between
the entrance and the exit blocks that have to be crossed entirely in the vertical
direction by any trajectory crossing the ©; column. Our aim is to show that for all
€ > 0 there exists an M € N such that, for P — a.e. ) and n is large enough, that
A\g < 2465” for all (N,0,z,u). To that aim, it suffices to prove that for all £ > 0
there exists an M € N such that, for P — a.e. Q) and n large enough, that

3 ope)= S N6 - %” for all (N, O¢raj, , ). (6.184)
iEVH,M iEVn,]L{ "
We set
Ront = {Q € {4, BYY*%; 3N € {1,..., £}, FOuaj € DI n, (6.185)

and Z 913(61) < Z fﬁg(éi)—sl{f }
i€V, i€V,
and we aim at showing that, for M large enough, >, - Po(R, a # 0) < oco.

We need to simplify the expression for R, . As explained earlier, for each
(N, ©4raj, ,u), the location of the catch-up columns Vi as only depends on IT =
(IL;)X, and the subsequence (MNp(6;)), Vit ar only depends on € and
(Hi’HiH)ief/n e Moreover, in the catch-up columns, the associated mesoscopic
strategy of displacemen’i (ﬁi,ﬁiJrl)i Vit is completel}: iietermined by
(11;, Hi+1>ie‘7n,M and (mB(@i))igvnyM only depends on Q and (II;, IT; 1) As
a consequence, for all i € Vi a we can rewrite Mp(0;) and Np(O;) as
Np(Q3, I0; + ), AlL) and Np(Q(i, I, + ), AllL;), respectively, and we obtain

n/Ly 4n/ML,,

R.vc | U U U RW.EV,Y), (6.186)

N=1 k=1 Vc{0,.,N—1}:|V|=k YeUn,v

iE‘~/r[,M'

where

Ty = {Y = (VY ey € (Z3)Y: Y =Y, i (i,i+1) € V2 and
N-1 _
e {0} x ZV: ) AL < 2%, Vi =V, (Wi, Ti)iev = (Y;Oa}/il)iEV}v
=0
(6.187)

where

R(N,k,V,Y) = {Q € {A, B}oxZ. (6.188)

> a6, Vi, A% < 3 a6 T ), AT <2
i€V i€V
and where, with each Y € Uy v, we associate Y = (ﬁz, ﬁ11+1)1iev with II the meso-
scopic displacement strategy associated with the II, which in (6.187) guarantees
that Y € Un v .
For N e {1,...,n/L,}, ke {1,...,4n/ML,}, V C{0,...,N—=1}: |[V| =k and
Y e Un,v, we let Yﬁ(}_/) be the number of blocks that have to be crossed entirely in
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the vertical direction in the catch-up columns (i.e., those columns indexed in V).
By construction, we note that (Y) > M(Y), so that the number of blocks that
have to be crossed vertically in the catch-up columns for the mesoscopic strategy
of displacement Y is not smaller than its counterpart for the auxiliary mesoscopic
strategy of displacement Y. We then note that Q € R,, v necessarily implies that
there exists N, k,V,Y such that M(Y) > en/L,, and therefore N(Y) > en/L,
(since it is always the case that M(Y) > N(Y) > Y iey Ne(Q(3, Y; + ), AY;)). As
a consequence, we can bound Po (R, v # 0) as follows:

n/Ly 4n/ML,,

Po(Roa #0) < > > > Po(R(N,K,V,Y)). (6.189)
N=1 k=1 vc{o,..., N—1}: YGQ?N’V:
IVi=k N(Y)>en/Ln

By a standard application of Cramer’s Theorem we obtain that the probability
under the sum of the right-hand side in (6.189) is uniformly bounded by e—cen/In
with ¢. > 0. At this stage we note that, uniformly in N and k, we can bound
[V.c{0,...,N —1}: |V]| = k| from above by (47?/]\612 ), which for M large enough
has an exponential growth rate that is smaller than c.. Moreover, uniformly in
N,k V

L n \k an n/L M~
< gb (" En < 2MLy " —) . .
Wnvl<2 < 2% )(kLn> s 2w <8n/MLn)< 8) (6.190)

The upper bound in (6.190) can be understood as follows. First, in each catch-
up columns we have to choose the length of the mesoscopic displacement and this
gives rise to the term ("éi), since the sum of all mesoscopic increments is bounded
above by n/L,. Next, we have to choose the sign of these k increments and this
gives a factor 2¥. Finally, in each catch-up columns we have to choose the height
of the entrance block (II;). Once again, the fact that the sum of all mesoscopic
displacement is smaller than n/L,, tells us that the difference between the height
of the exit block of a given catch-up column and the height of the entrance block of
the following catch-up column is bounded by the sum of the absolute value of the
mesoscopic increments that have been made in between these two columns. But
once again, since the sum of these mesoscopic displacements in absolute value is
smaller than n/L,, the number of choices for the heights of all entrance blocks in
catch-up columns is bounded above by (n/kL,)¥. This completes the proof because
when M is chosen large enough the exponential growth rate in the right-hand side
of (6.190) is smaller than c..

6.5.4. Step 4. In this step, we recall the coarse-grained version of the Hamiltonian
defined in (6.173) and we use it to introduce, in the catch-up columns, those trajec-
tories moving according to the auxiliary mesoscopic strategy, i.e., for (IV, Oraj, T, u)
we set

;4\5 = H IZ\Ln(éZ’,UZ') (6191)
i€\7n,1u
with ©; = (Q(z,ﬁz + -),gi, 1). Our aim is to prove that, for ¢ > 0 and M large

enough, we have for all Q € {A, B}"o*Z and all n € N that Ay < Ase®™ uniformly
in (N,0,z,u).
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For each i € Vi1 a7, we pick m; € Wg_ ;. Since v; L, is the minimal number of
1Yy n

steps required to cross the column indexed by ¢, and since Mp(0;) is the number
of B-blocks that have to be crossed vertically by any trajectory crossing a block
column of type (:)i, we can assert that the number of steps performed by 7; in the
B-blocks belongs to {Mz(0;)Ly, ..., N5(0;)L, 4+ 3L,}. Therefore, recalling the
definition (6.173) and the crude bound ry +-- -4, < 4n/ML,,, we can assert that,
for all (N, Otraj, z,u) and all (m;),q | € iy o WV

©i,vi,Ln’
k rs—1 _
g ottetlieet) s foa Np(0;)L, — 12-20 6.192
oS HS e () 2 552 Mp(0) L, — 12597 (6.192)
s=1 z=0

i€\7n,M

Thus, it suffices to choose M so large that 12a/M < € to complete the proof of the
step.

6.5.5. Step 5. In this step we replace, for each of the pieces of trajectories crossing
the catch-up column, the coarse-grained Hamiltonian H by the original Hamilton-
ian. Thus, we set

As= [ 2.7 ©iw). (6.193)
i€\71'[,1v[
Our aim is to show that, for ¢ > 0 and M large enough, we have for all ) €
{A, B}NoxZ that

Bi,M = {w: A5 < Age™ for all (N, Otraj, T, u)} (6.194)

satisfies P, (B} 5;) — 1 asn — oo. We will not give the details of the proof, because
it is completely similar to that of Step 1. The only difference is that we replace
U=+ +U by 0 =201+ + 0y

6.5.6. Step 6. Let (w;);cy be an i.i.d. sequence of Bernouilli trials, independent
of w,Q. For (N, Oyaj, T, u) we set 4 = 25:1 Uy — Us. By changing the w; into
v; in those catch-up columns, we remove uL, steps from the trajectories associ-
ated with (N, Ogaj, x,u), so that they have become trajectories associated with
(N, (:)traj, Z,v). In this step, we will concatenate the trajectories associated with
(N, étraj, Z,v) with an uL,-step trajectory to recover a trajectory that belongs to
Wi

Therefore, our aim is to show that for all € > 0 there exists an M € N such
that, for P — a.e.) and for all w,w € {A, B}, we have for n large enough that
Ay Ag < eE”Z(:if)’Q(M) for all (N,0O,xz,u). The proof is completely similar to
that of Step 2 in the proof of Proposition 6.3 (see Section 6.3.2). For this reason,
we will not repeat the details.

6.5.7. Step 7. In this step, we average over the microscopic disorders w,w. We
recall (6.176) and (6.144), and we set By, = B} 3y N B2 3. With the help of
Steps 1-6 above we can state that for every € > 0 there exists an M € N such that,
for P — a.e.Q and for w € B,y and @ € {4, B}, we have (recall (6.169))

Ar = ApAy < 521D for all (N,©, 2, u). (6.195)
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Next, we recall (4.11) and (6.138), and we use (6.195) to state that for all ¢ > 0
there exists an M € N such that, for P—a.e. Q2 and n large enough and for w € B,, i
and @ € {4, B}V,

n/Ly

Z D DEED DI DD DI At . )RR (ST

N=1 L cyoo reEXZS 00,00, Ln
044 €DF, N TE€Ye, ;. “euenaj,z,n

We use (D.3) to claim that there exists Cy,Cs > 0 such that, for all for all £, all
neN,all M € N and all J,

Pua([t 108 2550 200 = 20| 2 2) < e, (6.197)
We set also
_ 1 (wy,w),2 Q
Doyi= ) {‘EIOan,L" (M) = fn (M)‘ < e}, (6.198)

(N,@crajyfmu)

recall the definition of ¢, in (6.57) (with M = m = o0)), and use (6.197) and the
fact that c, grows subexponentially in n, to obtain lim, . Py, (DZ,M) = 0. For
all (w,w) satisfying w € B, p and (w,w) € Dy, ar, we can rewrite (6.196) as

Zyp, < e endn (M)+T7en, (6.199)

Consequently, recalling (4.37), for M large enough we have

loge, 1
£, B) < BB\ U DS o) Curl@) + =

+ ~E(1(,1,0,.00) (RF2(M) + Tem) ).

(6.200)
Since P(By, 5, U Dy, 3r) and lim,, o (log ¢, )/n = 0, the proof of Proposition 6.5 is
complete.

7. Proof of Theorem 2.1: slope-based variational formula

We are now ready to show how the variational formula in (6.2) can be trans-
formed into the variational formula in (2.14). We recall that, by the definition of
Rp in (4.63), the variational formula in (2.14) can also be written as

N(p,v
fla,B;p) = sup sup sup ﬁ. (7.1)
M21 peRpm vEB D(p,v)

Let Fy;,, and F be the counterparts of By, and B for Borel functions instead
of continuous functions, i.e.,

Fo,, = {(u@)eeVM cRV™ . ue >te VO € Vi, O = ug Borel} (7.2)
and
F ={v=(va,vp,vr) €D x D x [1,00)}, (7.3)
where

D = {l + v; on [0, 00) Lebesgue measurable with v; > 1+1 VI >0}. (7.4)

The proof of Theorem 2.1 is divided into 4 steps, organized as Sections 7.1-7.4. In
Step 1 we show that the supremum over By; =~ in (6.2) may be extended to F3; ,
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i.e.,
N N
sup sup (p,v) = sup sup (p, “) (7.5)
PERp.M (vo)ocy,, € By, D(p,u)  perpu (u6)ocw,, € Fv,, D(p,u)
In Step 2 we show that the supremum over B in (2.14) may be extended to F, i.e.,
N(p N(p
sup sup — (P, v) = sup sup —= (P, v) (7.6)

ﬁeﬁpyju UEB D(ﬁﬂ 'U) ﬁeﬁpy]\/[ UE}Z D(ﬁ’v) .

Then, the proof of Theorem 2.1 is achieved with the help of Steps 3 and 4 which,
combined with Theorem 6.1, allow us to show

N —
f(a, B;p) > sup sup sup 7(6’0)7 (7.7)
M>1peR, \ ver D(P:v)
N —
f(a,B;p) < sup sup sup V(p,v) (7.8)

M>15eR, 0 ver D)

Along the way we will need a few technical facts, which are collected in Appen-
dices C-G.

7.1. Step 1: extension of the wvariational formula. For ¢ € (0,00), let u(c) =
(ue(c))gey,, be the counterpart of the function v(c) introduced in (3.8-3.10). For

© € Vs and ¢ € (0,00), set
to i O (uth(0,u))(te) < <.
ug(c) =< z  otherwise, with z such that (7.9)
0y (up(©,u))(2) = ¢ > O (uy(O,u))(2),
where 2z exists and is finite by Lemma C.7 in Appendix C, and is unique by the
strict concavity of u — u(0,u) for © € Vs (see Lemma C.4 in Appendix C). The

fine properties of © — ug(c) are given in Lemma B.1 in Appendix B.
For (a,3) € CONE and p € M1(Vy) such that [i; te p(dO) < oo, set

N(p, u)
g(p;, B) = sup
(p ) uEFgM D(pau)

: (7.10)

with the convention that N(p,u)/D(p,u) = —oo when D(p,u) = co. The equality
in (7.5) is a straightforward consequence of the following lemma.

Lemma 7.1. For (a,3) € CONE and p € My (V) such that g(p;a, ) > 0,

N(p,w) ..
g(p;a, B) = —  with uw = u(g(p; o, B)). 7.11
R (9(p:0:5)) (711)
Moreover, w = u for p-a.e. © € Vs for all u € Fy,, satisfying g(p;, B) = JI\;EZ’Z%'

Proof: The following lemma will be needed in the proof.

Lemma 7.2. For (o, 3) € CONE and € > 0 there exists a t- > 0 such that, for all
p € Mi(Vu) and all u € F55,, satisfying D(p,u) € (tc, 00),
N(p,u)

Blow) <° (7.12)
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Proof: Pick ¢ > 0. By Lemma C.0, there exists a C: > 0 such that ¢(0,u) < ¢/2
for © € Vi and u > max{C.,te}. For R € (0,00), set B~ (R) = {0 € Vy: ug <
R} and BY(R) = {© € V: ug > R}, and write
N(p, u) B fB*(Ca) U@"b(@y’u@)ﬂ(d@) n fB*(CE) er(@/’f'@)p(d@)
D(p,u) D(p,u) D(p, u)
By the definition of C. and since ug > tg for all © € V;;, we can bound the
second term in the right-hand side of (7.13) by £/2 > 0. The first term in the
right-hand side of (7.13) in turn can be bounded from above by C.Cyus(a)/D(p, u)

(recall (4.37)). Consequently, it suffices to choose t. = 2C.Cys()/e to complete
the proof. ([

(7.13)

We resume the proof of Lemma 7.1. By assumption, we know that g(p) >
0, which entails that va top(dO) < oo. Thus, Lemma B.4(iv) tells us that

D(p,u(c)) < oo for all ¢ > 0. We argue by contradiction. Suppose that ggg’gi <
g(p), and pick u € Fy; = such that D(p,u) < co. Write
D(p,u)  D(p,u)+ [D(p,u) — D(p,u)]’
where
N(pvu) 7N(p,’l_l,) = \/7 u@¢(®au®) 7ﬂ@¢(@,ﬂ@)p(d@) (715)
Vum

The strict concavity of u — u(0,u) on [te, o) for every © € V), together with
the definition of @ in (7.11), allows us to estimate

N@m»—Nmm>sam/'«@—a@pu®) (7.16)

Vm
Consequently, (7.14) becomes

N(p,uw) _ N(p,u) +g(p)[D(p;w) — D(p, )]

D(p,u) N D(p,ﬂ)Jr [D(p,u) 7D(p,ﬂ)}
Define G = = — [N(p,a) + g(p)z]/[D(p,a) + x] on (—D(p,u),o0). Note that
N(p,u)/D(p,a) < g(p) implies that G is strictly increasing with lim,_,., G(z) =
g(p). Use Lemma 7.2 to assert that N(p,w)/D(p,u) < 2g(p) when D(p,u) > t%g(p).

(7.17)

But then, for all u satisfying D(p,u) < tq, (7.17) gives

2

N(p,u) _
— < — . .
B < 6ty — D)) < 900 (71)
Consequently,
N(p,u) g(p) —
s D@&)Smm{izxxu@zx@m) <glp)  (119)

VM

which is a contradiction, and so g(p) = N(p,u)/D(p,@).

It remains to prove that if u € F5; satisfies g(p) = N(p,u)/D(p,u), then u =u
for p-a.e. © € Vy;. We proceed again by contradiction, i.e., we suppose that a such
u is not equal to u for p-a.e. © € V. In this case, both inequalities in (7.16) and

(7.17) are strict, which immediately yields that gg/’;zg < g(p). O
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7.2. Step 2: extension of the reduced variational formula. Recall (3.8-3.10) and, for
(a,8) € CONE and p € My (R4 UR U{Z}) such that [~ (1+1) [pa+ ps](dl) < oo,
set
h(p; a, B) = sup ]Y(f)’v). (7.20)
vEF D(p, v)
Recall (3.8-3.10). The equality in (7.6) is a straightforward consequence of the
following lemma.

Lemma 7.3. For (e, 8) € CONE and p € My (RyURLU{Z}) such that h(p; o, B) >
0,

N(5.5
W B) = SO it = w(h(pia 6). (7.21)

D(p,0)
For v € F satisfying h(p; o, B) = gg’zg, v =7 for p-a.e. (k,1) € {A, B} x [0,00)

ork=1.

Proof: The proof is similar to that of Lemma 7.1. The counterpart of Lemma 7.2
is obtained by showing that for (, 8) € CONE and & > 0 there exists a . > 0 such
that, for all p € M (Ry UR} U{Z}) and all v € F satisfying D(p,v) € (t.,00),

N(p,v)
B0} <e. (7.22)

The proof of (7.21) is similar to the proof of Lemma 7.2 and relies mainly on

It remains to show that h(p; o, 8) = gg’;’g and that v € F satisfying h(p; a, ) =
gE?Z; necessarily satisfies v = © for p-a.e. (k,l) € {A,B} x [0,00) or k = T.

The proofs are similar to their counterparts in Lemma 7.1 and require the strict
concavity of u — uk(u,l) for I € R and of u — ugz(u), as well as the definition of
¥ in (3.8-3.10). O

7.3. Step 3: lower bound. The inequality in (7.7) is a straightforward consequence
of the following lemma.

Lemma 7.4. For all (o, 3) € CONE, p € Ry m and v = (va,vp,vr) € F there
exists p € Rp m and u = (ue)ecy,, € Fy,, satisfying

N(pv) _ Nip.w)
D(p,v) = D(p,u)
Proof: Since p € Ry, there exist p € Ry, p and h € € such that p = G, . For

© € Vyr and k € {A, B}, set d.o = lr.o/hre if hre > 0 and dj e = 0 otherwise.
Put

(7.23)

Ug = hA’@ VAda e "th,@ UB,d4.e —i—hL@ vz, © EVM. (7.24)
To prove (7.23), we recall (4.61) and integrate (7.24) against p. Since p = G, it
follows that

D(p,v) = L ue p(dO) = D(p,u). (7.25)
Vum
Since h € £ we can assert that

(hao.hpeo,hz0), (haeva dse hBo VB dse:hz0vT) € L(O; us), © € Vi,
(7.26)
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which, with the help of (4.48), allows us to write

ue ¥(0,ue) > haeo VA, dyo F(VA,dse,da.e)

~ b (7.27)
+hBeVB dse {F&(UB,dB,@, dp,e)+ T} + hz.0 vz ¢z(v7; 00, B).
After integrating (7.27) against p and using that p = G, ., we obtain
[ vewi©.ua)p(@®) = | [~ orsntvartpatan (7.28)
Vm 0

o0
+/ v, [k(vp, 1) + 252] pp(dl) + pr vz dz(vz;ia, B)|.
0
Thus, (7.23) is immediate from (7.25) and (7.28). O

7.4. Step 4: upper bound. The proof of (7.8) is a straightforward consequence of
the following lemma.

Lemma 7.5. For all (a, 8) € CONE, p € Ry m and u € By; , there exist p € Ry
and v € F such that
Nipuw) _ N(p.v)
D(p,u) = D(p,v)
Proof: Since u € By;, , Proposition G.1 in Appendix G allows us to state that
there exist h € € and r € U(h) such that

. (7.29)

ue (0,ue) = haeraei(rae, ,iiz) +hperpe [F(rpe, 22) + £52]

haﬁ,e
(7.30)
+hrerre ¢z(rre), YO € Vyy,
and
haerse+hperse +hrerre =ue, VO €V (7.31)
Define pa p, pB,h, P7,n to be the probability measures on Vi given by
dpkn hi.o
, @ = : ) ke A7B7I . 732
dp ©) Jy,, ke p(dO) { ' (7.32)
For [ € Ry, set
vai=Epu,[rae| 22 =1], vpi=Ep,,[re| 22 =1], (7.33)
and
vz = Ep;, [rze - (7.34)

The fact that » € U(h) implies that vz > 1 and v; > 141 for | € Ry and

k € {A, B}. Moreover, the Borel measurability of © — hy o for k € {A, B} implies

the Lebesgue measurability of [ — vy for k € {A, B}. Therefore, (va,vp,vz) € F.
By the concavity of a — ak(a,b) and p+— ugz(p), we obtain that

E,, . [TA’@ Rrae.D)| 22 = 1] <vagR(vagl), (7.35)

Bpp i [ree (Rroe. ) + 25%) | 122 = 1] < sy [Rosa ) + 252,

Eor [Tz,e ¢I(7“I,®)} < vz ¢z(vr).
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Integrate (7.30) against p, to obtain

/7 ue 1/)(9, u@) p(d@) = va hA’@ p(d@) EpA,h [TA’@ E(TA,Q, lao )} (7.36)
Vum

hae
+ fVM hz,e p(dO) E,, , [r1.0 ¢z(rz,0)]
+ 5, hB.o p(dO) By, [re (F(rse, 122) + 55%)].

hp,e

Set p = G, ;. In the right-hand side of (7.36) take the conditional expectation with

respect to }l;:‘cz) and }ZL’; 2 in the first term and the second term, respectively. Then
use the inequalities in (7.35), to obtain
[ e w(©.u0)p(d0) < [ oaritoas ) paa) (187
YVm 0

+/ vp, [F(us, 1) + ’B;Ta] ps(dl) + pr vz ¢z(vz, v, B).
0

Similarly, integrate (7.31) against p and take the conditional expectation with re-
spect to 12 and ZB’Z, to obtain

hao hB
oo o
[ ue p(d@) = / VAl ﬁA(dl) + / v, ﬁB(dl) + prUT. (7.38)
Var 0 0
At this point, (7.36) and (7.38) allow us to conclude that N(p,u)/D(p,u) <
N(p,v)/D(p,v). Since v € F, this completes the proof. O

8. Phase diagrams: proof of Theorems 3.1, 3.7 and 3.11

8.1. Proof of Theorem 5.1. We first state and prove a proposition that compares
f, fp and fp,, and deals with the regularity and the monotonicity of fp. Recall
the definition of a* in (3.20).

Proposition 8.1. (i) f(a,) = fo(a,§) for (0, §) € CONE: < 0.
(ii)  — fp(x,0) is continuous, convex and non-increasing on [0,00).
(iii) fp(x,0) > fp, forz € [0,a*) and fp(x,0) = fp, for x € [a*, ).

Proof: (i) Note that for (a,3) € CONE: 8 < 0 and v > 1 we have ¢Z(v,q, ) =
R(v,0), because the Hamiltonian in (4.6) is always non-positive. Thus, (2.14) and
(3.1) imply (i).

(ii) Since (o, B) — f(a, ) is convex on R? (being the pointwise limit of a sequence of
convex functions; see (2.9)) and is everywhere finite, it is also continuous. Therefore
(i) implies that z € [0,00) — fp(x,0) is continous and convex. The monotonicity
of x — fp(x,0) can be read off directly from (3.1).

(iii) Tt is obvious from (3.1) and (3.13) that fp(x,0) > fp, for every = € [0, 00).
Recall (3.20). Since x — fp(x,0) is continuous and non-increasing, it follows that
fo(z,0) > fp, for z € [0,a*) and fp(x,0) = fp, for x € [a*, 0). O

We are now ready to give the proof of Theorem 3.1.

Proof: (a) Pick @ > 0 and note that every element of J, can be written in the
form («+ 3, 8) (with 8 > —a/2), so that fp is constant and equal to fp(a,0) on
Jo. By the convexity of («, 8) — f(a, ) and by Proposition 8.1(i), we know that
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Jo: B fla+B,8)— fp(a,0) is convex and equal to 0 when 8 < 0. Therefore g,
is non-decreasing, and we can define

Be(e) =inf{B > 0: fla+B,8) > fp(a,0)}, (8.1)

so that (a+3,8) € D if and only if 8 < B.(«). It remains to check that 8.(a) < oo.

To that aim, pick any p € R, such that pz > 0 and any v € B such that vz > 1
and D(p,v) < oo, recall (2.15), and note that limg_,o, N (a+8, 8; p,v) = oo because
limg_ 00 ¢z (vz; 0 + B, 8) = 0o. The last observation is obtained by considering a
trajectory in W, that starts at (0,0) ends at (L,0), and in between stays in the
A-solvent except when the microscopic disorder w has 3 consecutive B-monomers,
in which case the trajectory makes an excursion of size 3: one step south, one step
east and one step north, inside the B-solvent. Such a trajectory has energy ScL
for some ¢ > 0.

(b) This is a straightforward consequence of the fact that fp(a, 8) = fp(a —3,0)
for (o, B) € CONE. O

8.2. Proof of Theorem 5.7.

Proof: (a) We want to show that o* € (0,00). To that aim, we first prove that
fp(0,0) > fp,, which by the continuity of x — fp(z,0) implies that o* > 0.
It is easy to see that pda o(dl) + (1 — p)dpo(dl) € R,, since this corresponds to
trajectories travelling along the z-axis while staying on one side. Thus, (3.1) implies
that fp(0,0) > &(u*,0), where u* is the unique maximizer of v +— &(u,0) on
[1,00). Moreover, by Lemma B.1(ii), we have #(u, ) < &(u*,0) for every [ € [0, c0),
u>1+1and (u,l) # (u*,0). Since §4,(dl) does not belong to R,, it follows that
fp, < fp(0,0), and therefore the continuity of z — fp(x,0) implies that o* > 0.

It remains to show that a* < co. Recall Hypothesis 3.4. We argue by contradic-
tion. Assume that fp(n,0) > fp, for all n € N. Then Hypothesis 3.2 and Lemma
7.3 tell us that there exists a sequence (pn)nen in 7, such that

N'D(ﬁna Uns N, O)
Dp(pn,vn)
with v, = v(fp(n,0)), where we recall (3.8-3.10). For simplicity, we write fo = fp,
and o = v(f2) (recall (3.8-3.10)) until the end of the proof. Since fp(n,0) > fa
for n € N, Lemma B.3(ii) yields v, a; < T4, for I € [0,00),n € N. Note that
Lemma B.3 is stated for fixed (a, ) € CONE, which is not the case here because
(ar, B) = (n,0). However, in the present setting Lemma B.3(ii) remains true for v,4
since, by definition, the value taken by v4 ;(c) for I € [0,00) and ¢ € (0,00) does
not depend on («, ).

We can write

f(n,0) = fp(n,0) = > fp, >0, neN, (8.2)

155 v, aulf&(vn,a,0,1) — f2](Pn,a + Pnz 00)(dl)
0) — fo = 20 & o : : 8.3
fo(n,0) = fo Do s tn) (8.3)
N 1o vnBalE(vn, 1 1) — B = f2]pn,(dl)
DD(ﬁna Un)
and the concavity of v — vi(v,1), together with the fact that v, 4; < 4, for all
[ €[0,00) and 0, (vi(v,1))(T4,1) = fa, implies that

)

’T}AJ%(@AJ,Z) - ’Un,AJFQ(Un,A,l, l) > fg(T}AJ — 'Un,A,l)~ (8.4)
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Since & is uniformly bounded from above and v, g; > 1+1 for every I € [0,00), we
can claim that, for n large enough,

vnBl[ ('UnBl; ) fg] < —%(1 +l), l e [0700) (85)

Consequently, (8.2) and (8.378.5) allow us to write

| oadi(oas) = Flpns + pozsida) = § [T 1+ 1pn@ >0 50)
0 0

for n large enough, which clearly contradicts Hypothesis 3.4 because p,, € 7, for
n € N. The proof is therefore complete.

(b-¢) By the definition of D, D; and D5 in (3.4), (3.15) and (3.16), we know that
D = Dy UDsy and Dy N Dy = (). Thus, Theorem 3.1(a) implies that (b) and (c)
will be proven once we show that J, N Dy = () for @ € [0,a*) and J, N Dy = 0
for a € [a*,00). Moreover, Theorem 3.1(b) tells us that fp is constant and equal
to fp(a,0) on each J, with o € [0,00). Consequently it suffices to show that
fo(a,0) > fp, for @ € [0,a*) and fp(,0) = fp, for a € [a*,00). But this is
precisely what Proposition 8.1(iii) states.

(d) Pick a € [0,00) and assume that Hypothesis 3.2 holds. Then there exists a
Pa € Op.a0 such that poz > 0. Set ¥ = v(fp(a,0)) and

Be(v(@)) = inf {8 > 0: ¢z(va0; 8+, B) > #(Ba0,0)}. (8.7)

The proof will be complete as soon as we show that Be(v(a)) = B.(y(a)) (recall
(3.6)). Note that, by the convexity of 8 — ¢7(04,0; ¢+ 8, 5), and since ¢z(T4,0; B+
a, B) = k(Ta,0,0) for B < 0, we necessarily have that ¢z(v4,0;a+8,05) > ~(1},4 0,0)
for all 8 > fB.(y(c)). From Propositions 8.1(i) and F.1(2), we have that

_ _ Np(pa,;?)
f(@,0) = fp(a,0) = FZE=5, (8.8)
and
Np(pas ) :/ VA1 R(VAL ) [Pa, At PaT 50](dl)+/ OB, [R(0B,1,1)— %] Pa,p(dl).
0 0
(8.9

By the definition of o = v(fp (e, 0)) in (3.8-3.10), we have that 9, (v £(v,0))(V4,0) =
fp(a,0). For notational reasons we suppress the dependence on « of fp.

First, assume that ¢z(04,0;8 + «, 8) = R(V4,0,0) (we also suppress the depen-
dence on (8 + «a, ). Then, since v — vpz(v) and v — vk (v,0) are both concave
and ¢z(v) > K(v,0) for all v > 1, we have that v — v¢z(v) is differentiable at 94
and

Oulv R(v,0)](Va,0) = Bulv ¢z (v)](Va,0) = f- (8.10)

Thus, for any p € ﬁp and v € B, we set © € B such that ¥ = v, except for ¥z, which
takes the value ¥4 . In other words,

N(p,v)  Np(p,0) + pzrlvzez(vr) — V4,05 (04,0,0)]
D(p,v) Dp(p, ) + prlor — Va,0]
< Np(p,0) + prfp(vz — Vay)
Dp(p,0) + pz(vz — vay0)

(8.11)

)
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where we use (8.10), the concavity of v — v¢éz(v) and the fact that ¢z(va,0) =
R(VA,0,0) by assumption. At this stage we recall that, by definition, w < fp.

p(p,0) —
Hence (8.11) entails that % < fp. Thus, Be(v()) > Be(y(a)).

The other inequality is much easier. Indeed, if we consider [ such that
dz(Vap;a + B,B) > R(Da0,0), then N(pa,8) > Np(pa,?) because pr, > 0.
As a consequence, f(a + 3,8) > fp(a,0), so that 8 > B.(y(«)), and therefore

Be(v(a)) < Be(v(@)).

(e) We recall that for o € [a*, 00) we have o = v(fp,) and therefore @4 ¢ is constant.
In (c) we proved that Be(v(a)) = B(v(a)) on [a*, 00). The definition of .(v(a)) in
(8.7) can be extended to « € [0, 00). Since a* > 0, the proof of (d) will be complete
once we show that o — B.(y()) is concave, continuous and non-decreasing on
(0,00) and that limg_,e0 Be(7(c)) < 0.

By using the same argument as the one we used in the proof of Theorem 3.1(a),
we can claim that limg o ¢7(Ta0;a + B, 8) = oo for every o € [0,00). Conse-
quently, B.(y(a)) € [0, 00) for every o € [0, 00). Moreover, the convexity of (a, §)
¢7(Ta,0; @, B) implies the convexity of («, 8) — ¢7(0a4,0; 0+ 3, 8)—R(V4,0,0), which
is also non-negative. Therefore, the set {(a,3): a € [0,00),8 € [—%,50(7((1))]} is
convex, and consequently @ — Bo(v(e)) is concave on [0, 00). This concavity yields
that a — B.(y(a)) is continuous on (0, 00), and since it is bounded from below by
0, also that it is non-decreasing.

It remains to show that lima_,e0 Be(7()) < co. To that aim, we define G.(c0)
by choosing o = oo in (8.7). Since ¢z(v4,0;00,8) < ¢z(va,0; 0 + B, ) for every
a>0and € [-5,00), it follows that Be(v(@)) < Be(oc) for every a € (0,00).
Therefore it suffices to prove that Bc(oo) < o0o. But this is a consequence of the
fact that limg_,co ¢7(04,0;00,5) = co. This limit is obtained by using again the
same argument as the one we used in the proof of Theorem 3.1(a).

(f) This is a straightforward consequence of the fact that f = fp on Dy and fp is
a function of a — .

(g) This is a direct consequence of the definition of the Dy-phase in (3.16) and the
fact that fp, does not depend on « and f (see (3.13)). O

8.3. Proof of Theorem 3.11. The proof of Theorem 3.11 has much in common with
that of Theorem 3.7 in Section 8.2. For this reason we only focus on the points
that need to be adapted from the proof of Theorem 3.7.

Proof: (a) The proof of a@* € (0,00) follows the same scheme as the proof of The-
orem 3.7(a). The bound fp(0,0) > &(u*,0) remains valid (u* being the unique
maximizer of u — #&(u,0)). Moreover, {p € R,: Kp(p) = K,} does not contain
any element of the form x4 o(dl) 4+ (1 — 2)dp,0(dl), since the fraction of horizontal
steps taken in solvent B can obviously be reduced by allowing the path to sometimes
travel in solvent A with a non-zero slope. This implies that fp(0,0) > fp,(0,0),
and therefore a* > 0.

The upper bound is also similar to that of Theorem 3.7(a). The only difference
is that fp, depends on n, so that we write fa(n) as well as v, = v(f2(n)). Both
(8.3) and (8.4) are still true, whereas some attention is needed to adapt (8.5) since
f2 depends on n. However, it suffices to pick any p € R, \ T, such that K4(p) +
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Kp(p) < oo and v € B, and such that 3, = 1+1 for (k,1) € {A, B} x [0,00) and
7 =1, to obtain that
N'p (p,0* C2
fa(n) = fp(n,0) > FEELS > e1 = oo, (8.12)

where ¢; € R and ¢; = [;°(1+1) pp(dl)/Dp(p,v*). Since p < p. and p € R, \ T,
it follows that K4(p) > 0 and Kg(p) > 0, and hence ¢; € (0,1). Thus, (8.5)
still holds with a right-hand side of the form —(% — €)(1 + [), which contradicts
Hypothesis 3.9 and completes the proof.

(b) The proof is literally the same as that of Theorem 3.7(b-c-d).

(c) This is again a consequence of the fact that f = fp on D and that fp is a
function of a — . O

Appendix A. Uniform convergence of path entropies

In Appendix A.l we state a basic lemma (Lemma A.1) about uniform conver-
gence of path entropies in a single column. This lemma is proved with the help
of three additional lemmas (Lemmas A.2—A.4), which are proved in Appendix A.3.
The latter ends with an elementary lemma (Lemma B.1) that allows us to ex-
tend path entropies from rational to irrational parameter values. In Appendix A.2,
we extend Lemma A.l to entropies associated with sets of paths fullfilling certain
restrictions on their vertical displacement.

A.1. Basic lemma. We recall the definition of Kz, L € N, in (4.2) and ¥ in (4.3).
Lemma A.1. For every € > 0 there exists an L. € N such that
|Zr(u,l) — R(u,l)| <€ for L> L. and (u,l) € Hf. (A1)

Proof: With the help of Lemma A.2 below we get rid of those (u,1) € HNQ? with
u large, i.e., we prove that lim, o x1(u,!) = 0 uniformly in L € N and (u,l) € H.
Lemma A .3 in turn deals with the moderate values of u, i.e., u bounded away from
infinity and 1+ |I|. Finally, with Lemma A.4 we take into account the small values
of u, i.e., u close to 1+ |I|. To ease the notation we set, for n > 0 and U > 1,

’HLJ]’U:{(U,Z)G’HL:1+|l|+7]§u§U}, A9
Hpv ={(uv,]) eH: 1+ |l|+n<u<U}. (4.2)

Lemma A.2. For every € > 0 there exists an U. > 1 such that
Llog{{mr e Wy mupp =L} <e VLeENuel+f:u>U.  (A3)

Lemma A.3. For everye >0, 71> 0 and U > 1 there exists an L., v € N such
that

|fr(u,l) — R(u,l)] < e VL> Leyu, (u,l) € Hipu- (A.4)
Lemma A.4. For every ¢ > 0 there exist n. € (0,1) and L. € N such that

72

|’~{L(uvl)7"%L(u+nvl)| <e VLZst (UJ) GHL’WG (03776)(7% (A5)
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Note that, after letting L — oo in Lemma A .4, we get
|B(u,l) — Ru+n,1)] <e V(u,l) € HNQ? n e (0,m:) NQ. (A.6)

Pick € > 0 and 7. € (0, 3) as in Lemma A.1. Note that Lemmas A.2-A.3 yield
that, for L large enough, (A.1) holds on {(u,l) € Hy: u > 1+|I| + & }. Next, pick
LeN, (u,l)eHp:u<1+|l|+% and n € (%, n.) N 2, and write

|fr(u,l) — R(u,l)] < A+ B+ C, (A7)
where

A=|kp(u,l) — &r(u+ng,1)],

B = |k (u+nr,1) — &(u+nz,1), (A.8)

C = |k(u+nr, 1) — f(u,l)|.

By (A.6), it follows that C' < e. As mentioned above, the fact that (v+mnr,0) € H
and u +np > |I| + 5 implies that, for L large enough, B < ¢ uniformly in (u,1) €
Hr: u < 14|l + 5. Finally, from Lemma A.4 we obtain that A < ¢ for L large
enough, uniformly in (u,l) € Hrp: u < 1+ || + 5. This completes the proof of
Lemma A.1. O

A.2. A generalization of Lemma A.1. In Section 6 we sometimes needed to deal
with subsets of trajectories of the following form. Recall (4.1), pick L € N, (u,l) €
Hp and By, By € % such that

By >0VvI>0Al >By and By — By >1. (Ag)

Denote by Wi (u,l, By, B1) the subset of Wy, (u, ) containing those trajectories that
are constrained to remain above ByL and below By L (see Fig. A.16), i.e

Wi (u, 1, B, By) = {m € Wy(u,1): BoL < ;5 < ByL fori e {1,...,ul —1}},
(A.10)
and let
~ 1 —~
kr(u,l, By, B1) = u—Llog|WL(u7l,B0,Bl)| (A.11)
be the entropy per step carried by the trajectories in VNVL(u,l,BO,Bl). With

Lemma A.5 below we prove that the effect on the entropy of the restriction in-
duced by By and Bj in the set Wy, (u, () vanishes uniformly as L — co.

Lemma A.5. For every ¢ > 0 there exists an L. € N such that, for L > L.,
(u,l) € Hr and By, By € Z/L satisfying By — By > 1, By > max{0,l} and
By < min{0,1},

|I%L(U,Z,Bo,Bl)—/~€L(u,l)| SE. (A.12)

Proof: The key fact is that By — By > 1. The vertical restrictions B; > max{0,[}
and By < min{0,!} gives polynomial corrections in the computation of the entropy,
but these corrections are harmless because (B, — By)L is large. O

A.3. Proofs of Lemmas A.2-A 4.
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uL steps

0,0)

L

FIGURE A.16. A trajectory in WL(u, 1, By, B1).

A.3.1. Proof of Lemma A.2. The proof relies on the following expression:

vy = {7 € Wur: mupy = L} = LX:H <L N 1) <(u - I)L) 2, (A.13)

r r
r=1

where r stands for the number of vertical stretches made by the trajectory (a vertical
stretch being a maximal sequence of consecutive vertical steps). Stirling’s formula

allows us to assert that there exists a g: [1,00) — (0, 00) satisfying lim, o g(u) =0
such that

L
(“L ) <edWul 4y >1,LeN. (A.14)

Equations (A.13-A.14) complete the proof.

A.3.2. Proof of Lemma A.35. We first note that, since u is bounded from above, it
is equivalent to prove (A.4) with &7, and R, or with G, and G given by

G(u,l) = uk(u,l), Gr(u,l) = ukg(u,l), (u,l) € Hp. (A.15)

Via concatenation of trajectories, it is straightforward to prove that G is Q-concave
on HNQ? ie.,

G(A(ul,ll) + (1 — )\)(Ug,lg)) > )\G(ul, ll) + (1 - )\)G(Ug, 12),
)\ S Q[071], (Ul,ll), (UQ,ZQ) S 7‘[ n QQ.

Therefore G is Lipschitz on every K N'H N Q? with K C H° (the interior of H)
compact. Thus, G can be extended on H' to a function that is Lipschitz on every
compact subset in HO.

Pick n > 0, M > 1, e > 0, and choose L. € N such that 1/L. < e. Since
Hym C HY is compact, there exists a ¢ > 0 (depending on n, M) such that G is
c-Lipschitz on H, ar. Moreover, any point in H, 5s is at distance at most € from
the finite lattice Hr_ 5 . Lemma 4.1 therefore implies that there exists a ¢ € N
satisfying

(A.16)

|Ger. (u, 1) — G(u,l)| <€ V(u,l) € Hiomns 4> e (A.17)
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Let L’ = ¢q.L., and pick ¢ € N to be specified later. Then, for L > ¢L’ and
(u,l) € "y m, there exists an (u',l") € Hp_ . such that |(u,l) — (v/,1')]|s < &,
u>u', |l > || and w — o' > |I] = |I'|. We recall (4.3) and write

0<Gul)—Grlu,l) <A+ B+C, (A.18)
with
A=|Gu,l) - G, )|, B=|GW. ) —Gp@/,1), C=Gp ') - Gr(ul).
(A.19)

Since G is ¢-Lipschitz on M, ar, and since |(u,l) — (v/,1')]oc < €, we have A < ce.
By (A.17) we have that B < e. Therefore only C remains to be considered. By
Euclidean division, we get that L = sL’ 4+ r, where s > g and r € {0,...,L" — 1}.

Pick 71, ma,...,ms € Wp/(u/, |']), and concatenate them to obtain a trajectory in
Wsr: (v, |l']). Moreover, note that
ul —u'sL' = (u—u')sL' +ur (A.20)

> ([l = 'DsL’ + (L + i)r = (L = sL') + (JIIL = s|I'| L),

where we use that L—sL' = r, u—u' > |I|—|I'| and u > 1+]I|. Thus, (A.20) implies
that any trajectory in Wy, (v, |I'|) can be concatenated with an (uL — u'sL’)-step
trajectory, starting at (sL’,s|l’|L’) and ending at (L, |l|L), to obtain a trajectory
in Wr(u, |I]). Consequently,

Gr(u,l) > $logkp (u',l') > 5 Gr(u',1'). (A.21)

But s > ¢ and therefore G/ (u/,l') — Gr(u,l) < %GL/ (W, 1) < %Mlog?) (recall that
log 3 is an upper bound for all entropies per step). Thus, by taking ¢ large enough,
we complete the proof.

A.3.3. Proof of Lemma A.J. Pick L € N, (u,l) € Hr, n € %, and define the map
T: Wr(u,l) = Wr(u + n,l) as follows. Pick 7 € Wy (u,l), find its first vertical
stretch, and extend this stretch by % steps. Then, find the first vertical stretch in
the opposite direction of the stretch just extended, and extend this stretch by %
steps. The result of this map is T'(7) € Wr(u + n,1), and it is easy to verify that
T is an injection, so that Wy (u,l)| < [Wr(u+n,1))|.

Next, define a map T: Wy (u+1n,1) — Wy (u,1) as follows. Pick 7 € Wy (u+1n,1)

nL nL

and remove its first 5* steps north and its first 5= steps south. The result is

T(ﬂ) € Wr(u,l), but T is not injective. However, we can easily prove that for
every € > () there exist . > 0 and L. € N such that, for all n <. and all L > [,
the number of trajectories in Wy, (u + 7,1) that are mapped by T to a particular
trajectory in m € Wy (u, 1) is bounded from above by el uniformly in (u,l) € Hr,
and m € Wr, (u,1).

This completes the proof of Lemmas A.2—-A 4.

Appendix B. Entropic properties

Recall Lemma 4.1, where (u,l) — &(u,[) is defined on H N Q2.
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Lemma B.1. (i) (u,l) — uk(u,l) extends to a continuous and strictly concave
function on H.

(i) For all u € [1,00), I — &(u,l) is strictly increasing on [—u + 1,0] and strictly
decreasing on [0,u — 1].

(#i3) For alll € R, lim,_,o &(u,l) = 0.

(iv) limyj_, o R(u,l) = 0 uniformly in u > 14 |i|.

(v) For alll € R, u > uk(u,l) is continuous, strictly concave, strictly increasing
on [1+]l],00) and lim,,—, o ui(u,l) = co.

(vi) For alll € R, u— uk(u,l) is analytic on (1 4+ |I|,00) and

vli_)rglo Ou(ufi(u,l))(v) =0, (B.1)
1)1_i>111}~_l Oy (ui(u, 1)) (v) = O;F (ui(u,1))(1 + [I]) = oo. (B.2)

Lemma B.2. For all ¢ > 0 there exists R. > 0 such that
Ou(ui(u,1))(v) <e, forle0,00),v>R.V2+I. (B.3)
Recall the definition of {v(c), c € (0,00)} in (3.8-3.10).

Lemma B.3. (i) For all c € (0,00), v(c) € B.

(i1) For (k,1) € {A, B} x (0,00), ¢ — v 1(c) is strictly decreasing and ¢ — vz(c) is
NON-iNcreasing.

(ii3) If (cn)nen € (0,00)N satisfies lim,, o0 ¢ = oo € (0,00), then v(c,) converges
pointwise to v(Coo)-

(iv) D(p,v(c)) < oo for all p € My(Ry URL U{T}) satisfying [y~ (1 +1)(pa +
pB)(dl) < oo and all c € (0,00).

Recall the definition of {u(c),c € (0,00)} in (7.9).

Lemma B.4. (i) For all c € (0,00), u(c) € By, .

(ii) For all © € V), ¢ ug(c) is non-increasing on (0,00).

(i1) If (cn)nen € (0,00)N satisfies lim,, o0 ¢ = oo € (0,00), then u(c,) converges
pointwise to u(Cop)-

(iv) D(p,u(c)) < oo for all p € M1(V) satisfying va to p(dO) < oo and all
c € (0,00).

B.1. Proofs of Lemmas B.1-B./.

B.1.1. Proof of Lemma B.1. (i) In the proof of Lemma A.1 we have shown that
% can be extended to H in such a way that (u,l) — u&(u,l) is continuous and
concave on H°. Lemma A .4 allows us to extend & to the boundary of #, in such a
way that continuity and concavity of (u,l) — u&(u,l) hold on all of H. To obtain
the strict concavity, we recall the formula in (4.4), i.e.,

uii(u, 1) ={ zggz)/’m,uun, ;ig (B.4)

where (a,b) — ak(a,b), a > 1+0b,b> 0, and p — pi(p), p > 1, are given in den
Hollander and Whittington (2006), Section 2.1, and are strictly concave. In the
case | # 0, (B.4) provides strict concavity of (u,l) — uk(u,l) on Ht = {(u,l) €
H:1>0} and on H~ = {(u,l) € H: 1 < 0}, while in the case | = 0 it provides
strict concavity on H = {(u,0),u > 1}. We already know that (u,l) — u#(u,l)
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is concave on H, which, by the strict concavity on H*, H~ and H, implies strict
concavity of (u,l) — uk(u,l) on H.

(ii) This follows from the strict concavity of I — &(u,l) and from the fact that
R(u,l) = k(u, —1) for (u,l) € H.

(iii-iv) These are direct consequences of Lemma A.2.

(v) By (i) we have that u — uk(u,l) is continuous and strictly concave on [1 4+
|I|, 00). Therefore, proving that lim, . u&(u,l) = oo is sufficient to obtain that
u — uk(u,l) is strictly increasing. It is proven in den Hollander and Whittington
(2006), Lemma 2.1.2 (iii), that lim, . uik(u) = oo, so that (B.4) completes the
proof for | = 0. If [ # 0, then we use (B.4) again and the variational formula in
the proof of den Hollander and Whittington (2006), Lemma 2.1.1, to check that
lim, o0 ak(a, b) = oo for all b > 0.

(vi) To get the analyticity on (1 + [I|,00), we use (B.4) and the analyticity of
(a,b) — ak(a,b) and p — pi(p) inside their domain of definition (see den Hollander
and Whittington, 2006, Section 2.1).

We note that for every | € R,

upz(u) > uk(u,0) > uk(u,l), u€l+|l],00), (B.5)

where the first inequality is well known and the second inequality comes from
Lemma B.1(ii). Since, by Lemma B.1(v), u — uk(u,l) is concave and increasing
on [1+]l],00), (C.1) and (6.156) imply (B.1).

It remains to prove (B.2). To that aim, we recall that an explicit formula is
available for %(u,l), namely,

R(u,l) = k(u/|l|,1/|l]), forl#0, (B.6)

where k(a,b), a > 1+b, b > 0 is given in den Hollander and Whittington (2006),
Section 2.1 (in the proof of Lemmas 2.1.1-2.1.2). The latter formula allows us to
compute 9, (ui(u,1))(1+1+¢,1) =G(1+ }+ 5, 1) with

_ (a+1—b)(a—1-b)
G(a,b) = 5 log [(aﬂbazsa,b)(zlbzga,b)} (B.7)

and with
o = s [(a+ 1) = ((a = 1) + (02 = 1)) "]
fp = iy |~ (a= 1)+ (= b2 +62 = 1) 7], (B.S)

so that the proof of (B.2) will be complete once we show that for all b > 0 it holds
that lim, g+ G(1 + b+ ¢,b) = co. The latter is achieved by using first (B.8) to
check that §14ptep = 1%}) + (3 - ﬁ)s +o(e) and e14p4ep = 5+ 0(e) as e — 07,
and then by substituting these two expansions into (B.7) at (a,b) = (14+b+¢€,b),

which implies the result after a straightforward computation.

B.1.2. Proof of Lemma B.2. The proof is based on the following lemma.

Lemma B.5.
lim 0, [ui(u,1)](2+1,1) = 0. (B.9)
l— 00
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Proof: We recall (B.6-B.8), and we note that 8, (u&(u,))(2+1,1) = G(1+ %, 7).
Thus, the proof of Lemma B.5 will be complete once we show that lim,_,o+ G(1 +
2b,b) = 0. The latter is achieved by using (B.7) and (B.8) to compute

Lo _1 (2+b)b B.1
G(1+2b,b) = 5 log [24+b(1- 25 +0(0)) | (b+o(b) .

which immediately implies the result. (|

We resume the proof of Lemma B.2. Once Lemma B.5 is proven, we use the
concavity of u — ui(u,l) for I € R to obtain that for € > 0 there exists a . > 0
such that 9, [uk(u,l)](u,l) < e for all I: |I|] > . and uw > 2 +{. Thus, it remains
to show that there exists a R. > 0 such that 9, [uk(u,1)](u,l) < e for I € [0,1.] and
u > R.. By contradiction, if we assume that the latter does not hold, then there
exists € > 0 and two sequences (I,,)nen € [0,1:]Y and (uy)nen such that u, > 1+1,
for n € N and lim,,_, o, u,, = 00 and such that 9y, [uk(u,)](un,l,) > for n € N. As
a consequence, we can write

UnF(tn, ln) — (L4 1)L + 1, 1) > e(un — 1 —1,,), (B.11)
and, with the help of Lemma B.1(ii), we obtain
UpR(Upn, 0) > upk(un,ly) > e(u, —1—=1.), forneN, (B.12)

which clearly contradicts Lemma B.1(iii) because lim,, ;oo 1, = 00.

B.1.3. Proof of Lemma B.3. (i) We must prove that [ — v4(c) and I — vg (c)
are continuous on [0, 00). We give the proof for vy, the proof for vp being similar.
Let (I,,)nen be a sequence in [0, 00) such that lim,, ol = loo € [0,00). We want
to prove that lim,, o va,, (c) = va, (c). For simplicity, we set v,, = vay, (c) for
n € N and v = va,, (c). We also set g,(u) = ui(u,l,) forn € Nand u > 1+1,
and goo(u) = uk(u,ls) for u > 1+ l. By Lemmas B.1(i) and (v), we know that
gn converges pointwise to g, as n — 0o, and that g,, and g, are strictly concave.
Consequently, 0, (gn) converges pointwise to 9y (goo). We argue by contradiction.
Suppose that v, does not converge to v. Then there exists an 1 > 0 such that
Un = Vs + 1 along a subsequence or v, < v, — 1 along a subsequence. Suppose for
simplicity that v, < vy —n for n € N. Then the strict concavity of g,, implies that
Ou(gn) (Voo —1N) < Oy(gn)(vn) = ¢, and therefore, letting n — oo and using the strict
concavity of goo, we obtain 9y (goo ) (Voo) < Ou(goo) (Voo — n) < ¢. This provides the
contradiction, because 9y (g0 ) (Vo) = ¢ by definition. The proof is similar when we
assume that v, > ve + 7 for n € N.

(ii) For (k,1) € {A, B} x [0, 00), this is a straightforward consequence of the defini-
tion of v(c) in (3.8-3.9), of the strict concavity of u — uk(u,l) and of the continuity
of u — 9, (uk(u,l)) for every | € [0,00) (see Lemma B.1(v-vi)). For ¢ — vz(c)
we do not have strict monotonicity because u — 9y (u¢z(w)) is not proven to be
continuous.

(iii) Similarly to what we did in (i), we consider (¢, )nen a sequence in (0, 00) such
that lim, o ¢, = oo € (0,00), and we want to show that lim,_, vk (c,) =
vgi(co) for k € {A, B} and [ € [0,00) and lim, o v7(cn) = vz(cso). Again we
argue by contradiction. Suppose, for instance, that vz(c,) does not converge to
v7(Cs0). Then there exists an > 0 such that vz(c,) < vz(coo) — 1 or vz(cn) >
v1(cso) + 1 along a subsequence. Suppose for simplicity that vz(c,) > vz(cso) + 1.
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Then 9, (u¢z(u))(vz(cso) + 1) > 0 (udz(w))(vz(en)) > ¢y for n € N. Let n — o0
to obtain 9; (u¢z(u))(vz(cas)) > 0y (udz(u))(vz(coo) +n) > Coo, which contradicts
the definition of vz(cso) in (3.8-3.10). The proof is similar when we assume that
vz(cn) < vz(coo) —m for n € N.

(iv) This is a consequence of Lemma B.2, which implies that for all ¢ € (0, c0) there
exists a [. € [0,00) such that va;(c) < 241 for all [ > [.. Moreover, (3.8-3.9)
and the fact that (o, 3) € CONE entail that vp;(c) < va(c) for I € [0,00), and
therefore [ (14 1)(pa + pp)(dl) < co combined with the finitness of vz(c) imply

D(p,v(c)) < cc.

B.1.4. Proof of Lemma B./. (i) The proof is similar to that of Lemma B.3(i), except
for the fact that when we consider ©,, — O, as n — oo in Vj;, we have (by Lemma
(.3) the pointwise convergence of g, (u) = u)(On,u) t0 goo(u) = (O, u), but
we do not have the pointwise convergence of 9g,(u) to 9goo(u) since goo is not a
priori differentiable. However, the strict concavity and the pointwise convergence
of g, towards g, gives us

0™ goo(u) > limsup 0~ g, (u) > liminf 8™ g, (u) > 07 goo (u), (B.13)

n—00 n—oo
with which we can easily mimic the proof in Lemma B.3(i)

(ii) The proof is similar to that of Lemma B.3(ii), except for the fact that the
monotonicity of ¢ — ug(c) is not proven to be strict because u — I(u (0, u)) is
not proven to be continuous.

(iii) We mimic the proof of Lemma B.3(iii). Let (¢, )nen be a sequence in (0, c0)
such that lim,, .o ¢, = oo € (0,00), and assume that there exists an n > 0 such
that ue(cn) > ue(cso) +n along a subsequence. Then 9, (u (0, u))(ue(coo)+n) >
0, (uh(0,u))(ue(cn)) > ¢ forn € N. Let n — 0o to obtain 9 (up (0, u))(ue (¢s))
> 0, (up(0,u))(ue(cx) + M) > Coo, which contradicts the definition of ug(cs) in

(7.9).

(iv) The proof is similar to that of Lemma B.3(iv). The role of Lemma B.2 is taken

2

over by Lemma C.&

Appendix C. Properties of free energies

C.1. Free energy along a single linear interface. Also the free energy ps ¢F (u; o, 3)
defined in Proposition 4.2 can be extended from Q N [1,00) to [1,00), in such a
way that pu — p¢? (u; a, B) is concave and continous on [1,00). By concatenating
trajectories, we can indeed check that p +— u¢?(u; o, 8) is concave on Q N [1,00).
Therefore it is Lipschitz on every compact subset of (1,00) and can be extended
to a concave and continuous function on (1,00). The continuity at 4 = 1 comes
from the fact that ¢Z(1;a, ) = 0 and lim,, |1 ¢*(u) = 0, which is obtained by using
Lemma E.1 below.

Lemma C.1. For all («,3) € CONE:
(i) p— pd (p; o, B) is strictly increasing on [1,00) and limy, 0 pd” (13 v, B) = 00.
(it) limy, 00 ¢ (13 v, B) = 0.
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(iii)

Tim 07 (uéz(us 0, 8))(v) =0, (1)
lim ) (upzr(u; o, B))(v) = 0 (ugpz(u; a, B))(1) = co. (C.2)

v—1

Proof: (i) Clearly, ¢T(u;a,8) > %(u,0) for 4 > 1. Therefore Lemma B.1(iv)
implies that lim,, . ud” (5, B) = co. Thus, the concavity of p +— u¢”(u; a, B) is
sufficient to obtain that it is strictly increasing on [1,00).

(ii) See den Hollander and Pétrélis (2009b), Lemma 2.4.1(i).

(iii) To prove (C.1), we pick x € {A, B}® such that x(0) = A and x(—1) = B.
We recall (4.40) and consider © = (x,0,0,0,2) € Vnint7A727M such that [4(0) =
I5(©) = 0. By Proposition 4.6, we have

uh(Og,u) > udz(u), wu € [l,00), (C.3)

and (C.3), together with Lemma C.7 and the concavity and monotonicity of u
ugz(u), imply (C.1).

It remains to prove (C.2). For all («, 8) € CONE we know that u — udz(u;, )
is continuous and strictly concave on [1,00). Therefore we necessarily have

im0 (uoz(w)(v) = O (ubz(w)(1). (C.4)

Moreover, since (u¢z(u))(1) = (uk(u,0))(1) = 0 and since ¢z(u) > &(u,0) for u >
1, we have 0, (upz(u))(1) > 9;F (ui(u,0))(1) and (B.2) gives 97 (uk(u,0))(1) = oo,
which completes the proof of (C.2). O

Recall Assumption 4.3, in which we assumed that u ~— u¢?(u;a, B) is strictly
concave on [1,00). The next lemma states that the convergence of the average
quenched free energy ¢ to ¢7 as L — oo is uniform on QN [1, 00).

Lemma C.2. For every («a, 8) € CONE and ¢ > 0 there exists an L. € N such that
pr(n) — ()| <e  Vpel+Z, L> L. (C.5)

Proof: Similarly to what we did for Lemma A.1, the proof can be done by treating
separately the cases p large, moderate and small. We leave the details to the
reader. O

C.2. Free energy in a single column. We can extend (0, u) — ¥(0,u) from V;, to
V?M by using the variational formula in (4.48) and by recalling that & and ¢ have
been extended to H and [1,00) in Appendices A.3 and C.1.

Pick M € N and recall (4.18). Define a distance dy; on Vs as follows. Pick
01,0, € Vy, abbreviate

©1 = (x1,AlIl, bo,1, b1,1, 1), ©2 = (x2,Ally, by 2, b1 2, 72), (C.6)
and define
Lia () #x20))
dm(01,02) = Z = oul +|AIL — Al |+ [bo,1 —bo,2|+[b1,1 —b1,2|+[21 — 22
JEZ
(C.7)

so that JM((@l, u1), (O3, uz)) = max{|us — uz|,dr; (01, 03)} is a distance on V,;
for which V ij is compact.
Lemmas C.3 and C.4 below are proven in Section C.3.
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Lemma C.3. For every (M,m) € EIGH and («, ) € CONE,
(u,0) = up(0,u; a, B) (C.8)

. . . 3 km . 7
is uniformly continuous on V,; endowed with dyy.

Lemma C.4. For every © € Vyy, the function u — u)(0,u) is continuous and
strictly concave on [te,00).

Below we list several results that were used in Section 7. The proofs of these
result are given in Section C.3. Proposition C.5 below says that the free energy per
column associated with the Hamiltonian given by (8 — «)/2 times the time spent
by the copolymer in the B-solvent is a good aproximation of (0, ) when u — oo
uniformly in © € V). This proof of this proposition will be given in Section ('.3.3.

Proposition C.5. For all (a,8) € CONE and all € > 0 there exists R. > 0 and
L. € N such that

B—a —
VOu) —Frlog Y "V <e ©€Vy, u>teVR., L>Le,
TEWe u,L

(C.9)
where T'(m) = Z?:Ll I{X(mel,m) = B} is the time spent by 7 in solvent B.

Lemmas C.6—C.8 below are consequences of Lemma C.4 and Proposition C.5.
The proofs of Lemmas C.6 and C.8 will be given in Sections C.3.4 and C.3.6.
Lemma C.6 shows that ¥ (©,u) is bounded from above uniformly in © € V) as
u — 0o. Lemma C.7 identifies the limit of 9, (u1(0©,u)) as u — oo for © € V.
Lemma C.8 is the counterpart of Lemma C.6 for 9, (ut(0,u)) instead of (O, u).

Lemma C.6. For all (o, 8) € CONE and € > 0 there exists a Ce > 0 such that

o € ’Lf Oc vM \Vnint,B,l,Mv u > te V C€7 C1
< — .
w( ’U) o ﬁ%a +e if ©€ Vnint,B,l,Ma u>te VC;, ( O)

Lemma C.7. For all (o, 3) € CONE,
lim 8 (uh(O, u))(v) 0 if © €V \ Vaint,B,1,Ms (C.11)
im uh(0,u))(v) = o . — .
v—oo IBT Zf O c Vnint,B,l,M~

Lemma C.8. For all (o, 8) € CONE and € > 0 there exists a Vo > 0 such that
€ if ©€Vm\ Vaint,B1,m, V> 2te V Ve,
[377“ +e if © € VB 1M, V2oV V.

Oy (u(©, u))(v) < {
(C.12)

C.3. Proof of Lemmas C.5-C.8.

C.3.1. Proof of Lemma C.3. Pick (M, m) € EIGH. By the compactness of V;\;}m,
it suffices to show that (u,©) — w(0,u) is continuous on V. Let (O, u,) =
(Xn, ALy, b n, b1,n, un) be the general term of an infinite sequence that tends to
(©,u) = (x,AIlLby,by,u) in (Vy;",dp). We want to show that lim, e
UnP(On, upn) = wtp(0, u). By the definition of EM, we have y,, = x and AIl,, = AII
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for n large enough. We assume that © € Vi, so that ©,, € Vi, for n large enough
as well. The case © € Vyiut can be treated similarly.
Set

R = {(a,h,1) € [0,m] x [0,1] x R: h +|I| < a} (C.13)

and note that R, is a compact set. Let g: R, — [0,00) be defined as g(a, h,1) =
af(%,+) if b > 0 and g(a,h,l) = 0 if h = 0. The continuity of %, stated in
Lemma B.1(i), ensures that g is continuous on {(a,h,l) € Ry,: h > 0}. The
continuity at all (a,0,1) € R,, is obtained by recalling that lim, o R(u,l) = 0
H.

In the same spirit, we may set R, = {(u,h) € [0,m] x [0,1]: h <u} and define
g R, [0,00) as ¢'(u, h) = u¢® (%) for h > 0 and ¢'(u,h) = 0 for h = 0. With
the help of Lemma C.1 we obtain the continuity of ¢’ on R!, by mimicking the
proof of the continuity of g on R,,.

Note that the variational formula in (4.48) can be rewriten as

uh(0,u) = sup Q((h), (a),la,1B), (C.14)
(), (a)€L(laslpsw)

with
Q((h), (a),1a,15) = glaa, ha,la) + glap, hp,lp) +ap 252 + ¢ (a®,hT), (C.15)

and with 4 and lg defined in (4.39). Note that L(l4, Ip; u) is compact, and
that (h), (a) — Q((h),(a),la,lp) is continuous on L(l4, Ip; u) because g and ¢’
are continuous on R,, and R
attained.

Pick £ > 0, and note that g and ¢’ are uniformly continuous on R,, and R/,
which are compact sets. Hence there exists an 7. > 0 such that |g(a,h,l) —
g(a, W, 1| < e and |¢'(u,b) — ¢'(v/,b")| < & when (a,h,l),(a’,h,l') € R, and
(u,b), (u',b') € R, are such that |a — a/|,|h — W[, |l = U'|,|Ju — /| and |b — V| are
bounded from above by 7.

Since lim, 00 (On,un) = (O,u) we also have that lim, by, = by,
lim,, o0 b1,», = b1 and lim;, o0 Uy, = u. Thus, lim,, 0 lan =4 and lim, o Iy =
I, and therefore |l4, —la| < e, llpn —lB| < 1 and |u, — u| < . for n > n,
large enough.

For n € N, let (hy,),(an) € L(Ian, lBn; un) be a maximizer of (C.14) at
(©n, un), and note that, for n > n., we can choose (hn), (Gn) € L(l4, lp; u) such
BB —hp,| and [RL — K|

respectively. Hence, the supremum in (C.14) is

m>

~ ~ ~T_I| |
that |aA,n —QAn|, |aB,n - aB,n|a |an - an|, |hA,n - hA,n
are bounded above by 7.. Consequently,

Un¢(@n, un) - u¢(@, u) < Q((hn)a (an)7 lA,na lB,n) - Q((En); (an)7 la, ZB) < 3e.
(C.16)
We bound u)(0, u) — (O, uy) from above in a similar manner, and this suffices
to obtain the claim.

C.3.2. Proof of lemma C./. The continuity is a straightforward consequence of
Lemma C.3: simply fix © and let m — oco. To prove the strict concavity, we
note that the cases © € Vipe i and © € Vying, i can be treated similarly. We will
therefore focus on © € Vit us-
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For l € R, let
N ={(a,h) € [0,00) x [0,1]: a > h+|l]}, N ={(a,h) € Nj: h >0}, (C.17)

and let g;: N — [0, 00) be defined as g;(a, h) = a&(%, L) for h > 0 and g;(a, h) = 0
for h = 0. For [ # 0, the strict concavity of (u,l) — uk(u,l) on H, stated in Lemma
B.1(i), immediately yields that g; is strictly concave on M+ and concave on Nj.
Consequently, for all (a1,h1) € N;" and (a2, he) € N; \ N;T, g, is strictly concave
on the segment [(u1, h1), (uz, ha)].

Define also g: Ny — [0,00) as g(a,h) = a¢* (%) for h > 0 and g(a, h) = 0 for
h = 0. The strict concavity of u + u¢? (u) and of u — ufi(u,0) on [1,00), stated in
Assumption 4.3 and in Lemma B.1, immediately yield that g and gy are concave on
N and that, for h > 0, a — g(a, h) and a — go(a, h) are strictly concave on [h, 00)

Similarly to what we did in (C.14), we can rewrite the variational formula in
(4.48) as

w(©,u) = sup Q((h), (a)) (C.18)
(W), (@) €L L, Ui w)
with
Q((h), (a)) = gi,(an, ha) + gip(ap, hp) + ap 55% + G(u — as — ap,1 — ha — hp),

(C.19)
and the supremum in (C.18) is attained. In what follows we will restrict the proof
to the case l4,lp > 0 for the following reason. If I, = 0 for k € {A, B}, then
the inequality go < ¢ and the concavity of g ensure that there exists a (h), (a) €
L(la, lp; uv) maximizing (C.18) and satisfying hy = ax = 0, which allows to copy
the proof below after removing the k-th coordinate in (h), (a).

Next, we show that if (h),(a) € L(la, Ip; u) realizes the maximum in (C.18),

then (h), (a) ¢ L(L4, lp; u) with
L, g u)=La(la, lg; u)UL(La, Ig; u) UL (La, I; u) (C.20)

and
La(la, lp;u) = {(h),(a) € L
Lp(la, lp; u) = {(h), (a) € L
LE(La, 1p; u) = {(h), (a) € L

Assume that (h), (a) € E(ZA, Ig; u), and that hy > 0 or hZ > 0. For instance,
(h), (a) € LX(L4, I; u) and hy > 0. Then, by Lemma B.1(iv), Q strictly increases
when ay is replaced by a4 + a and o by 0. This contradicts the fact that
(h), (a) is a maximizer. Next, if (h),(a) € L(la, Ip; u) and hy = hT = 0, then
hg = 1, and the first case is (h), (a) € La(la, Ip; u), while the second case is
(h), (a) € LX(l4, Ip; u). In the second case, as before, we replace as by as + aF
and a” by 0, which does not change @ but yields that aq >[4 and therefore brings
us back to the first case. In this first case, we are left with an expression of the
form

lA, lB, ) ha =0 and aA>lA},

(

(la, lp;u): hg=0 and ap > Ip},
(la,lp;u): hy =0 and ay > 0}. (C.21)
u)

Q((h), () = g1, (ap, 1) + ap 252 (C.22)

with ha = hT =0 and ag > l4. Thus, if we can show that there exists an z € (0,1)
such that

gii(aa, ) +gi(ap, 1 —x) > gi(as, 1), (C.23)



Phase diagram for a copolymer in a micro-emulsion 1027

then we can claim that (h),(a) is not a maximizer of (C.18) and the proof for
(h), (a) & L(l4, l5; u) will be complete.

To that end, we recall (4.4), which allows us to rewrite the left-hand side in
(C.23) as

gii(aa, )+ gizlap, 1 —x) =ayu n(‘}—? %) +ap fi(‘;—g, 11_7‘"’3) +ap BfTa (C.24)
We recall den Hollander and Whittington (2006), Lemma 2.1.1, which claims that
k is defined on DOM = {(a,b): @ > 1+ b,b > 0}, is analytic on the interior of DOM
and is continuous on DOM. Moreover, in the proof of this lemma, an expression for
Op k(a,b) is provided, which is valid on the interior of DOM. From this expression
we can easily check that if a > 1, then limy_,0 0 k(a,b) = co. Therefore, by the
continuity of k on (a4/l4,0) with as/la > 1 we can assert that the derivative with
respect to  of the left-hand side in (C.24) at = 0 is infinite, and therefore there
exists an = > 0 such that (C.23) is satisfied.

It remains to prove the strict concavity of u — u)(0,u) with © € Vip ar. Pick
up > ug > te, and let (h1),(a1) € L(I4, Ip; u1) and (hg), (a2) € L(14, Ip; usz) be
maximizers of (C.18) for u; and ug, respectively. We can write

(a1)7 (hl) = (aA,17 ap,i, a’%)a (hA,la hB,h h%)v
(a2), (h2) = (aa2,ap2,a3), (hag2, hp2,h3). (C.25)
Thus, (@F92) (dh) € £(1,, 1p; “5%2) and, with the help of the concavity of
Jis 915, g Droven above, we can write
UIJQHQ lﬁ(@, ul;u2) > @((%)a (%)) > %(ul 1/1(@7111) + ug 1/1(@#2)) (026)
At this stage, we assume that the right-most inequality in (C.26) is an equality and
show that this leads to a contradiction, after which Lemma C.4 will be proven.
We have proven above that (a1), (h1) € L(la,lp;u1) and (a2),
(ha) ¢ L(la, lp; uz). Thus, we can use (C.19) and the strict concavity of ¢;,, 91,
on lj,./\flirg and the concavity of g on Ay to conclude that necessarily
(aan,han) = (aa2,ha2) and (api1,hp1) = (a2, hp2) (C.27)

As a consequence, we recall that u; > us and we can write

I I
U] =U] — A4 —GB2 > Uz —GA2 —aB2 =Uy >0, (C.28)

and therefore, since (a1), (h1) & LZ(la, I; u1), it follows that hZ > 0 such that
(recall (C.27))

hf=1—ha1—hp1=1—has—hpa=h%>0. (C.29)

Hence we can use the strict concavity of a — g(a, h¥) to conclude that u? = uZ,
which clearly contradicts (C.28).

C.3.3. Proof of Proposition C.5. The proof is performed with the help of Lemma E.1
stated in Section E. For this reason we use some notations introduced in Lemma F.1.

We pick 7,7 > 0 (which will be specified later), and we let K € N be the integer
in Lemma E.1 associated with «, 3,7m,7. For © € Vs, u > te and m € We 4.1, We
let N, be the number of excursions of 7 in solvent B in columns of type ©. We
further let also (I;) = (Ix(1),...,I:(Ny)) be the sequence of consecutive intervals
in {1,...,uL} on which 7 makes these N, excursions in B, so that (I;) € Eur N,

and T'(7) = Zf\;"l |1 (3)]-



1028 F. den Hollander and N. Pétrélis

Pick © € Vj;, u > to and partition We w1, into two parts:
VO —{re We.u,r: T(m) >~uL} and Ve —{ne Weu.r: T(m) <~uL}.

u,L,y u, L,y
(C.30)
There exists a ¢ > 0, depending on «, 5 only, such that
|HP () = T(m) 252 < eT(w) < cyul, me Vi, (C.31)

Since any excursion in solvent B requires at least 1 horizontal steps or L vertical
steps, we have that N < u+ L for 1 € We 4, 1. Since u+ L < uL/K as soon as
u, L > 2K, it follows that

I(r) e Uy T € Eupv: T(I) > qul}, L>2K, u>teV2K, meVi,
(C.32)

s . . O,w —« o,
and therefore w € QZL"I? implies that |H () — T(r)25%| < nquL for 7 € Vu’Lt/.

Consequently, for w € QZL" 7> We have

|HP () =T (m) 552 | < uL(n+cy), © € Var, u>2KVte, L>2K, 7€ Wf’“’%’
C.33

Rewrite

v =Bl 3 olany |ar((@r ) A ©a

TEWe u,L
where A is an error term given by

A :E{ilog V; eH?’“(w)’(QZfﬁ)c} _E[ﬁ log ; eH?’“(w)’QZﬁf(}
TeEWeo u,L TeWe u,L
(C.35)

By (4.37), we obtain that |A| < 2C;.
To conclude, we set n = ¢/3, v = ¢/3c. By Lemma E.1, there exists an L. € N
such that, for u > 2K Vtg and L > L., we have IP’((QZL"IA()C) < £/6 Cys. Thus, we

can use (C.33) and (C.34) to complete the proof of Proposition C.5.

C.3.4. Proof of Lemma C.0. Pick € > 0. By applying Proposition C.5 with /2, we
see that there exists an R,/ > 0 such that

P(O,u) < liinsupﬁlog Z eT(”)ﬂTa +5, O¢€ Vi, u>teV R, /5.
o TEWo u,L

(C.36)

We first consider the case © € Vs \ Vyint.5.1.m- Since (o, 3) € CONE, we can use
(C.306) to obtain

»(O,u) < liin:,up LlogWe,url+ 5, u>teV R (C.37)

Thus, (C.37) and Lemma A.2 imply that there exists a C. > R./5 such that

Y(0,u) < e whenu >teVC. and © € V) \Vnint,B,LM. The case © € Vnint,B,l,M

can be treated similarly after noticing that T'(w) = wL for m1 € Weg, 1 and
O € Vyint,B,1,M-

C.3.5. Proof of Lemma C.7. The proof is a straightforward consequence of the
strict concavity of u — u(0,u) for © € V), Proposition C.5 and Lemma A.2.
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C.3.6. Proof of Lemma C.5. Pick € > 0. The proof will be complete once we show
the following two properties:

(1) There exists a T, > 0 such that
€ if ©€Vuy\Voint,pi,m: te > T,

) . - C.38
BT“ +e if © € Vin,1,m:te > Te. ( )

9, (u(©,u))(2te) < {

(2) For all T' > 0 there exists a V. r > 0 such that

€ if ©€Vy\Vant,sm:te <T, v>toV Ver,

%4 e if ©€Vumpimite <T, v>toVVer.
(C.39)

We prove (C.39) for the case © € Vs \ Viint. .1, (the case © € Vyine, 51,1 can
be treated similarly). To that aim, we assume that there exists a sequence (0,,)nen
in Vas \ Vaint, 51,1 such that tg, < T for n € N and a sequence (uy,)nen such that
up, > to, for n € N, lim,,_, o u,, = 00 and

Oy (w(©,w)(v) < {

0, (u(On,u))(uy) >e, neN. (C.40)
By concavity of u +— u)(0,,,u) for n € N (see Lemma C.4), we have
UnP(On, Up) — to, Y(On,to,) > € (un —te,), neN. (C.41)

Therefore, the uniform bound on free energies in (4.37) and the inequality tg, < T
allow us to rewrite (C.41) as
T(C €
Y(Op,up) > € — M, n €N, (C.42)
U,
which contradicts Lemma C.6 because lim,, oo u,, = 00.

It remains to prove (C.38). This is done in a similar manner for the case © € Vs \
Vhint,B,1,m (the case © € Vying,B,1,m can again be treated similarly), by assuming
that there exists a sequence (©,,)nen it Vas \ Vnint, B,1,m such that lim,_, tg, = 00
and

O, (u(On,u))(2te,) > e, meN. (C.43)

Thus, similarly as in (C.41-C.42), the concavity of u — u)(0,,u) and (C.43) give
O, t

V(0,,2te,) > % + M n € N. (C.44)

At this point we use Proposition C.5 to assert that there exist R. > 0 and L. € N
such that, for n satisfying te, > R. and L > L., we have

B-a
(O te,) > Zplog Y T g (C.45)

‘ﬂ'EW@,t@n L

B-a
'l/)(@n,2t@n) S m IOg Z eT(Tr) 2 + %
m€We,, 2tg, L
By using (C.44-C.45), we obtain that, for tg, > R. and L > L.,
T B-a - B—a <
sazlog Y, LT zgiplg Y T 4§ (Co)

meEWe,, 2tg, L T€We,tg, L
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uses some key ingredients that are provided which we can rewrite as

2telnL log We, 2te, L] + 4'?@_62 min{7(7), ™ € We, 2te, L} (C.47)

n

> 4@3@—@[1 min{T(ﬂ)v e W®mtc—>n7L} + %

n

Since 9,, € Vur \Vnint,BJ,M, there exist 1 € We,, 1o, .1 and ma € We,, 2t,, .1 sSuch
that

T(m) = 15(0On) = min{T(7), 7 € We, to,.L} (C.48)
T(m) = 15(On) = min{T(7), 7 € We, 2te, ...}
Thus, for tg, > R. and L > L., the inequality in (C.47) becomes
ﬁ log |W®n,2t@",L| > %7 (0-49)

which obviously contradicts Lemma A .2.

Appendix D. Concentration of measure

Let S be a finite set and let (X;,.A;, i1i)ics be a family of probability spaces.
Consider the product space X = [[,.s X endowed with the product o-field A =
®icsA; and with the product probability measure p = ®;cst;-

Theorem D.1. (Talagrand, 1996) Let f: X +— R be integrable with respect to
(A, p) and, fori € S, let d; > 0 be such that |f(z) — f(y)| < d; when z,y € X
differ in the i-th coordinate only. Let D =}, g d?. Then, for all € > 0,

u{xeX:Vuﬂ—/fmt

The following corollary of Theorem D.1 was used several times in the paper. Let
(o, B) € CONE and let (&;);eny be an i.i.d. sequence of Bernouilli trials taking the
values —a and 3 with probability 3 each. Let l € N, T: {(z,y) € Z*xZ?: |[z—y| =
1} = {0,1} and T C W, (recall (2.1)). Let Fj: [~a,a]! — R be such that

Fi(z1,...,2;) =log Z eZim1 @i T((mim1,mi)) (D.2)
el

2
> E} < 2e” 2D, (D.1)

For all z,y € [~a, ]! that differ in one coordinate only we have |Fj(z) — Fi(y)| <
2a.. Therefore we can use Theorem D.1 with § = {1,...,l}, X; = [~a,a] and
i = %(5_a +6p) for all i € S, and D = 40?1, to obtain that there exist Cy,Cy > 0
such that, for every [ € N, ' C W,, and T': {(x,y) € Z2xZ?: |[x—y| = 1} — {0,1},

B(F(Err. . &m) — E(FiErs - 6m))] > 1) < Cre™ T

(D.3)

Appendix E. Large deviation estimate

Let (&;);en be an i.i.d. sequence of Bernouilli trials taking values 8 and —« with
probability % each. For N < n € N, denote by &, n the set of all ordered sequences
of N disjoint and non-empty intervals included in {1,...,n}, i.e.,

gn,N = {(Ij)lgjgN C {1,...,n}: Ij = {mian,...,maXIj} V1<j<N,
max[; <min/l;y; V1 SjSN—landesﬁ@VISjSN}. (E.1)
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For (I) € &N, let T(I) = Z;vzl |I;| be the cumulative length of the intervals

making up (). Pick v > 0 and K € N, and denote by gan the set of those (I) in
Ui<N<(n/K) En,n that have a cumulative length larger than yn, i.e.,

7 = UM E{(D) e &0 n: T(I) > yn). (E.2)

<nT()%. (E.3)

Lemma E.1. For all (o, 8) € CONE, v > 0 and n > 0 there exists an K €N such
that, for all K > K,

lim P((Q)7)°) = 0. (E.4)

n—oQ

Proof: An application of Cramér’s theorem for i.i.d. random variables gives that
there exists a ¢, > 0 such that, for every (I) € £,

Pé( iZ(éi—ﬁ’T“)

j=1liel;
where we use that T'(I) > yn for every (I) € EJK Therefore

> nT(U) < et g ememn (E5)

Pe((Q)%)°) < |E] le~etmm, (E.6)

and it remains to bound |&,] ;| as

. n
(N EEIED S (A ] ®7)
N=1 N=1
where we use that choosing (I) € &, y amounts to choosing in {1,...,n} the end
points of the N disjoint intervals. Thus, the right-hand side of (E.7) is at most
(n/K) (27:}1{)’ which for K large enough is o(e“M7") as n — oo. O

Appendix F. On the maximizers of the slope-based variational formula

In this appendix we prove that, when restricted to 7%7 M, the supremum of the
variational formula in (2.14), which equals the truncated free energy f(«, 8; M, p),
is attained at some p € R, » and for a unique v € B. For ease of notation we
suppress the M, p-dependence of f(a, 8; M,p) in the proofs of this section.

Recall (7.20) and for M € N, p € (0,1) and («, 8) € CONE, let Op a1,q,8 be the
subset of R, s containing those p that maximize the variational formula in (2.14),
ie.,

N(p, _
fla, B; M, p) = h(p; o, B) = sup = ('(_) D for P € Oprap- (F.1)
veEB D(pﬂ))

Recall (3.8-3.10) and set
v =v(f(e, B; M, p)). (F.2)
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Theorem F.1. For all M € N, p € (0,1) and (o, 3) € CONE the following hold:
(1) The set Op r,a,p is non-empty. B

(2) For all p € Op ra,p and all v € B satisfying f(a, 8; M,p) = N(p,v)/D(p,v),
v =70 for p-a.e. (k,1) € {A, B} x[0,00) ork=1T.

Proof: The following proposition will be proven in Section I.1 below and tells us

that the maximum of the old variational formula in (3.15) is attained for some
p € Rp. . Recall the definition of g(p; v, 8) for p € Rp ar in (7.10).

Theorem F.2. For all (a,3) € CONE, there exists a p € Rpn such that
(e, B; M, p) = g(p; , B).-

We give the proof of Theorem .1 subject to Theorem F.2. To that aim, we
pick (o, 3) € CONE and note that, by Theorem F.2, there exists a p € Rp a such
that f(«,B8) = g(p;a, 8). In what follows, we suppress the (o, 8)-dependence of

9(p; o, B).
Since f(a, 8) = g(p), (4.64) ensures that g(p) > 0, and by applying Lemma 7.1

we obtain that N u(f (. B)
Py U a,

fla,B) = 50— ——258

D(p.u(f(@.5) )

Apply Lemma 7.5, which ensures that there exist a p € R, and a v € F such that

N(p,u(f(e,8)) _ N(pv)

(F.3)

_ . F.
DG ule. D) = Dip.v .
Then h(p) > 0, and we use Lemma 7.3, which tells us that
N(p,v) _ N(p,v(h(p))) (F.5)

D(p,v) ~ D(p,v(h(p)))
[.5) and the variational formula in (2.14) are sufficient to complete the
). The proof of (2) is a straightforward consequence of Lemma 7.1. O

Now (F.3-
proof of (1

F.1. Proof of Theorem F.2. We give the proof of Theorem F.2 subject to the fol-
lowing lemma, which will be proven in Section F.2 below.

Lemma F.3. For allt > 0 and u € By;  there exists an mo € N such that, for
all p € Rpm and v € By; - satisfying v < u and N(p,v)/D(p,v) > t, there exists a
5 € R, such that N(3,)/D(5,0) > N(p,v)/D(p,v).

Let (pn)nen in Rpam be such that n — g(py;a,8) is increasing with

lim, 00 g(pn;a, 8) = f(a,5). Obviously we can choose (pn)nen such that
g(pn; o, B) > f(a,B)/2 for all n € N. Thus, with the help of Lemma 7.1, we

obtain N (a(o)))
Pn, UG\ Pn
(pn7 aﬁ) D 9
(pn, u(g(pn)))
Apply Lemma F.3 to see that there exists an mgy € N such that for all n € N there
exists an p, € R}, such that

N(pn, u(g(pn))

n € N. (F.6)

N(pn,u(g(pn)))

)
Dl w(9(pn)) ~ Dlpu,ulglpn))) 7
A straightforward consequence of (F.7) is that
N(pn,ulg(pn))) _ o
% Dl uto(pn))) 1O "
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Moreover, p, € Ml(VEO) for all n > ng, and since VZILO is compact we have that
pPn converges weakly to poo € R;n% along a subsequence. Lemma B.4 implies that
n — u(g(pn)) is non-increasing and converges pointwise to u(f(a, f)) as n — oo.
Since V" is compact, Dini’s Theorem tells us that the convergence of u(g(p,)) to
u(f(a, B)) is uniform on V,;”. Therefore, using the uniform continuity of (u, ©)

uh(0,u) (see Lemma C.3), we obtain

N (poo, u(f(e, B)))
ﬂmﬁ%—pwmﬂmﬂmﬂnf

which completes the proof of Theorem F.2.

(F.9)

F.2. Proof of Lemma F.5. First, we state and prove Claim F.4 below, which will
be needed to prove Lemma [.3. Pick m > M + 2, and note that for © =
(x, AIL b, b1, ) € Vs \ V,; we necessarily have 2o = 2. Define T),: Vas — Vpj
as

Tm(g) = {

M

0 if© eV,

~ = . —=m F.10
O = (x, Al by, b1,1) if © = (x, AL by, b1,2) € Var \ Vyy, ( )

Claim F.4. Forall p€ Ry pyand m e N:m > M +2, p o T, € Ry

Proof: First note that T,,: Vs — Vﬂ is continuous with respect to the dy;-
distance. Next, pick p € Rp as. By the definition of R ar, there exists a strictly
increasing sequence (Np)gen and (Hf)]—GNO, (bé?)jeNm (x?)jeNO such that
p = limg_y00 prv, (Q, 1T, % 2%). The continuity of T}, implies that

poT 1= klim o, (Q,TTF b 2%y o T1, (F.11)
—00
and we can easily check that
ka(Q7Hk7bkazk) © Trﬁl :ka(QaHkabkajk)7 (F12)
where for j, k € Ny we define

ks . k 1k 2k sky - ™
jk _ JCj lf (Q(.]v')aAvabjabj+11‘j) eva (F 13)
J 1 otherwise. '
Consequently, p o ;)1 € Ry, - [

We resume the proof of Lemma F.3. Pick ¢ > 0, p € Rpm, u € By;,, and
v € By, satisfying v < u and N(p,v)/D(p,v) > t. Pick m € N:m > M + 2,
whose value will be specified later, and set p,, = p o T,,;!, which belongs to R, n
by Claim F.4. Write

N(pm,v) N(p,v) _ [', . _ A+tB
D(pm,v)  D(p,v) */0 Gl(t)dt  with  G(t) = ——5 (F.14)
with
A= [ vey(0,v8)p(dO) B= /7 _ g $(0,vg) — ve1(0, v6) p(dO)
VM Vu\Viy

(F.15)

C= ve p(dO) D= / vg — ve p(dO). (F.16)
V}\/[ VM\VE
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Note that the sign of the derivative G’(t) is constant and equal to the sign of

_Ap_ A% _ Y8 (&, v
B CD_ AT U@{C( v@) 1/1(9711@)-%1}@1/)(@,1)@) p(d®). (F.17)

Therefore Lemma F.3 will be proven once we check that for m large enough the
right-hand side of (F.17) is strictly positive, uniformly in v < w. To that aim, we
recall Lemma (.6, which tells us that ¢(0,ve) < t/2 for every © € Vi \ Vi,
provided m is chosen large enough (because vg > tg > m), and we recall (4.37),
which tells us that ¢(O, vg) < Cut(a) for © € Vi \ V}yy. We further note that

—M+2

vg < max {ue O eV } < oo for every © € Vyy, (F.18)

which, together with the fact that 2 & = N(p,v)/D(p,v) >t >0 and ve > te > m
for © € Vs \ Vyy, ensures that for m large enough the right-hand side of (F.17) is
strictly positive, uniformly in v < u. This completes the proof of Lemma F.3.

Appendix G. Uniqueness of the maximizers of the variational formula

In this appendix we first prove, with the help of Lemma C.2, that for © € Vy,
and u > tg the variational formula in Proposition 4.6 has unique maximizers. This
uniqueness implies that, for a given column type and a given time spent in the
column, the copolymer has a unique way to move through the column. We next
use this uniqueness to show, with the help of Proposition G.2, that for u € By; |

the maximizers of (4.48) are Borel functions of © € V.
Recall (4.60) and pick h € €. Set

Uh) = {(rae:78.0:71.0)0w,, € (10,00)*)V:
rho > 1+ 22 Vk € {A, B} VO € Vy,
rr.e > 1 Vk; € {A,B} VO € V),
© — 10 Borel Vi € {A,B,I}}, (G.1)

L, Cg = 0 by convention when Iy o = hie = 0.

where we recall that

Proposition G.1. For allu € By;  there exist h € £ and r € U(h) such that, for
all © € VM,

ue P(0,ue) = haeraei(rae, ,L’; 2) (G.2)

+hperpe [k (TB@,;ILBO)-Fﬁ %]+ hzerre ¢z(rre),

and
haerae+hperse+hrerre =ue. (G.3)
Proof: For [ € R, let
Ni={(a,h) € [0,00) x [0,1]: a = A+ |I]}, N ={(a
let g;: Nj +— [0,00) be defined as g;(a,h) = aR(%,+)
a,

for h = 0, and let g: Ny — [0,00) be defined as g(
g(a,h) =0 for h = 0. We can rewrite (4.48) as

u’(r[)(@a u; @, ﬁ) = sup flA,lB [(h’)v (CL)] (G5)

(R),(a)€L(O;u)

:h >0}, (G4)

h) €N
for h > 0 and g;(a,h) =0
h) = a¢z(3) for h > 0 and
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with
fiais[(R),(@)] = gii(an,ha) + g1y (ap, hp) + ap ’B_Ta + glaz, hz). (G.6)

Lemma G.2 shows that, subject to some additional conditions, the maximizer in
the right-hand side of (G.5) is unique. This allows us to prove the continuity
of this maximizer as a function of ® on each subset of a finite partition of Vjy,
which implies the Borel measurability of this maximizer and completes the proof
of Proposition G.1.

Lemma G.2. For all © € Vs and u > tg there exists a unique (h), (a) € L(O;u)
satisfying:

(i) (O, 10, 8) = Fro 10 (B), (@)

(i) hi, > 0 if a,, > 0 for k € {A, B,Z}.

(i4) @y = hy, = 0 if I, = 0 for © € Vinpe.nr and k € {A, B}.

(’L"U) ap = iLk =0 if Zk =0 for® € Vnint,k@,M and k € {A,B}

Proof: We prove existence and uniqueness.

Existence. The existence of a (h1),(a1) € L£(O;u) satisfying (i) is ensured by
the continuity of f;,;, and the compactness of £(©;u). Assume that © € Vip as,
la=0and (hy4,a1,4) # (0,0). Then

golai,a,h1,4) + glar,z,h1,z) < glai,a,hi,a) + glarz, hi 1)
~ (a1 a+ar, hi,a+hi,
§2g(1A2 11, 1A2 11)

= g(al,A +ayz, hi,a+ hl,l’)a (G.7)
where we use the inequality go < g and the concavity of g. Thus, by setting
(hz), (az) = (0, hl,B: hl,A + hl,I), (O,aLB, ay,A+ aLI), we obtain that (hz), (CLQ) S
L(0;u), satisfies (iii) and

flAJB((h?)) (aQ)) 2 flA,lB((h1)7 (0,1)), (GS)

which implies that (hs), (a2) also satisfies (i). The case © € Viptnr, Ip = 0 and
the case © € Vyintk2.0, I = 0, k € {A, B}, can be treated similarly, to conclude
that there exist (h), (a) € L(O;u) satisfying (i), (ili-iv). We will show that (ii)
follows from these as well. The proof will be given for the case © € Vim, M and
la,lp > 0, since (iii) already indicates that hy = ar = 0 if [y = 0 for k € {A, B}
and © € th, - The case © € Vnint’ M can be treated similarly.

In the proof of Lemma C.4 we showed that (h), (a) € £(©,u) maximizing (G.5)
necessarily satisfies hy, > 0 if a > I for k € {A, B} and hz > 0 if az > 0. Thus,
we only need to exclude the cases hy = 0 and ax = I > 0 for k € {4, B}. We
will therefore assume that hg = 0 and ap = [p, and prove that this leads to a
contradiction. The case hy = 0 and ay = l4 is easier to deal with. We finally
assume that az > hz > 0 (the case az = hz being easier). We pick ¢ > 1 and
x > 0 small enough to ensure that az —cx > hz — 2z > 0, and we set (h)z, (a); =
(ha,z,hz—2),(aa,lp+cx,a; —cx). The proof will be complete once we show that
for x small enough the quantity

St ((R)2, (@)a) = Fratn(R), (@) = g1 (s + co,) = Vi + cx (252) - (G.9)

is strictly positive with V,, = g(az, hz) — §laz — cxz, hz — x).
At this stage, we note that u — pdz(p) is concave on [1,00), and therefore is
Lipshitz on any interval [r,¢] with r > 1. Since az/hz > 0, there exists a C' > 0,
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depending on (az, hz) only, such that V,, < Cz for  small enough. Therefore (G.9)
becomes

Jias (W), (@)z) = fiais((B), () 2 gup(Ip + cx,2) = (C +c55%) 2z (G.10)

for « small enough. By the concavity of g;,, and since g;,(Ip + cz,0) = 0, we can
write g, (g + cx,x) > x 02q1, (I + cx, x) for £ > 0. By the definition of g;,, and
with (4.4), we obtain that

0291, (I +cx,x) = (1+%)82/<;(1+%,%). (G.11)
We now recall den Hollander and Whittington (2006), Lemma 2.1.1, which claims
that « is defined on DOM = {(a,b): a > 1+b,b > 0} and is analytic on the interior of
DOM. Moreover, in the proof of this lemma, an expression for 9y k(a,b) is provided
that is valid on the interior of DOM. From this expression, and since ¢ > 1, we can
check that lim, g O2k(1 4+ cs, s) = oo, which suffices to conclude that the right-hand
side of (G.9) is strictly positive for & small enough. This completes the proof of
the existence in Lemma G.2.

Uniqueness. The uniqueness of (h), (@) is a straightforward consequence of the
strict concavity of ¢g;, and ¢;, when 4 # 0 and lgp # 0 and of the concavity
of go and g. We will not write out the proof in detail, because it requires us to
distinguish between the cases © € Vint, v and © € Vnint, M, between [, = 0 and
Iy #0, k € {A, B}, and also between xg = 1 and zg¢ = 2. The latter distinctions
are tedious, but no technical difficulties arise. [

We resume the proof of Proposition G.1. We pick u € By; , and for each © € Vu

we apply Lemma (.2 at ©, ue, to obtain a (h)e, (a)e € L(O;ue) satisfying (i-iv).
We set (h): © € Vi + he and (a): © € Vy + ae, and we recall (4.60). If we can

show that © — (h)e is Borel, then it follows that (h) € £, because (ii) and the fact
that (h)e, (@)e € L(O;ue) for © € V), ensure that the other conditions required
to belong to & are fulfilled by (h). Moreover, if we can we show that © — (a)e is
Borel, then the proof of Proposition G.1 will be complete, because we can set

(Fa(©),75(0),72(0)) = (gjggg, 22, g;gg;), ©cVu, (G.12)

with the convention 7(©) = 1 when ax(0) = hy(©) = 0 for k € {A, B, T}, after
which (7) € U(h) and (h), () satisfy (G.2) and (G.3).
To complete the proof it remains to show that © — (h)e, (a)e is Borel. Recall

the partition

Vur = Vit U (Ugamye(1,2)x (4,8} Vint ke, M ) (G.13)
and partition these five subsets in the right-hand side of (G.13) into smaller subsets
depending on the values taken by [4 and Ig. For Viy a, this gives

Vint,M ={O ¢ Vint,M: la,lp>0tU{O € Vint,M: la>0,lp =0} (G.14)
U {@ GVim,M: la=0,lg > 0} U {@ GVim,MZ la=Ilg= 0},

and on each of these subsets the fact that (h)e,(a@)o are the unique elements in

L(0;ue) satisfying (i-iv) implies that © + (h)e, (@)e are continuous and therefore
Borel. Since each subsets in the right-hand side of ((.14) belongs to the Borel o-

field generated by dps (recall (C.7)), we can conclude that © — (h)e, (@)e are Borel
on Vjr. This completes the proof of Proposition G.1. O
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