A bifurcating system subject to multiplicative noise can exhibit on-off
intermittency close to the instability threshold. For a canonical system, we
discuss the dependence of this intermittency on the Power Spectrum Density
(PSD) of the noise. Our study is based on the calculation of the Probability
Density Function (PDF) of the unstable variable. We derive analytical results
for some particular types of noises and interpret them in the framework of
on-off intermittency. Besides, we perform a cumulant expansion for a random
noise with arbitrary power spectrum density and show that the intermittent
regime is controlled by the ratio between the departure from the threshold and
the value of the PSD of the noise at zero frequency. Our results are in
agreement with numerical simulations performed with two types of random
perturbations: colored Gaussian noise and deterministic fluctuations of a
chaotic variable. Extensions of this study to another, more complex, system are
presented and the underlying mechanisms are discussed.Comment: 13pages, 13 figure