2,761 research outputs found
Anveshak - A Groundtruth Generation Tool for Foreground Regions of Document Images
We propose a graphical user interface based groundtruth generation tool in
this paper. Here, annotation of an input document image is done based on the
foreground pixels. Foreground pixels are grouped together with user interaction
to form labeling units. These units are then labeled by the user with the user
defined labels. The output produced by the tool is an image with an XML file
containing its metadata information. This annotated data can be further used in
different applications of document image analysis.Comment: Accepted in DAR 201
Coulomb and nuclear breakup of a halo nucleus 11Be
Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at
about 70 MeV/u have been investigated by measuring the momentum vectors of the
incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy
spectra as well as the angular distributions of the 10Be+n center of mass have
been extracted for both targets. For the breakup on Pb target, the selection of
forward scattering angles is found to be effective to extract almost purely the
first-order E1 Coulomb breakup component, and to exclude the nuclear
contribution and higher-order Coulomb breakup components. This angle-selected
energy spectrum is thus used to deduce the spectroscopic factor for the
10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with
B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to
Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained
spectroscopic factor. The non-energy weighted sum rule is used to extract the
root mean square distance of the halo neutron to be 5.77(16) fm, consistent
with previously known values. In the breakup with C target, we have observed
the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41
MeV. Angular distributions for these states show the diffraction pattern
characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for
these states. We finally find that even for the C target the E1 Coulomb direct
breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review
COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation
The absence of large scale datasets with pixel-level supervisions is a
significant obstacle for the training of deep convolutional networks for scene
text segmentation. For this reason, synthetic data generation is normally
employed to enlarge the training dataset. Nonetheless, synthetic data cannot
reproduce the complexity and variability of natural images. In this paper, a
weakly supervised learning approach is used to reduce the shift between
training on real and synthetic data. Pixel-level supervisions for a text
detection dataset (i.e. where only bounding-box annotations are available) are
generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which
provides pixel-level supervisions for the COCO-Text dataset, is created and
released. The generated annotations are used to train a deep convolutional
neural network for semantic segmentation. Experiments show that the proposed
dataset can be used instead of synthetic data, allowing us to use only a
fraction of the training samples and significantly improving the performances
Biografo: An integrated tool for forensic writer identification
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-20125-2_17The design and performance of a practical integrated tool for writer identification in forensic scenarios is presented. The tool has been designed to help forensic examiners along the complete identification process: from the data acquisition to the recognition itself, as well as with the management of large writer-related databases. The application has been implemented using JavaScript running over a relational database which provides the whole system with some very desirable and unique characteristics such as the possibility to perform all type of queries (e.g., find individuals with some very discriminative character, find a specific document, display all the samples corresponding to one writer, etc.), or a complete control over the set of parameters we want to use in a specific recognition task (e.g., users in the database to be used as control set, set of characters to be used in the identification, size of the ranked list we want as final result, etc.). The identification performance of the tool is evaluated on a real-case forensic database showing some very promising results.This work has been partially supported by the Spanish Dirección General de la Guardia Civil, and projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) from Spanish MICINN, BBfor2 (ITN-2008-238803) from the European Commision, and Cátedra UAM-Telefónica
New BPS Solitons in 2+1 Dimensional Noncommutative CP^1 Model
Investigating the solitons in the non-commutative model, we have
found a new set of BPS solitons which does not have counterparts in the
commutative model.Comment: 8 pages, LaTeX2e, references added, improvements to discussions,
Version to be published in JHE
Image processing of cylinder wake generation
In the present study, image processing techniques are applied to the chronophotographic visualizations of a cylinder wake generation. The flow patterns obtained by means of tracer particles are digitalized and processed in order to characterize the flow. This characterization is carried out by determining the evolution of the geometric parameters governing the wake, together with the streamfunction, vorticity, and pressure distributions. The present study reaches the moment of shedding of the first pair of vortices
Noncommutative Chern-Simons Soliton
We have studied the noncommutative extension of the relativistic
Chern-Simons-Higgs model, in the first non-trivial order in , with only
spatial noncommutativity. Both Lagrangian and Hamiltonian formulations of the
problem have been discussed, with the focus being on the canonical and
symmetric forms of the energy-momentum tensor. In the Hamiltonian scheme,
constraint analysis and the induced Dirac brackets have been provided. The
spacetime translation generators and their actions on the fields are discussed
in detail.
The effects of noncommutativity on the soliton solutions have been analysed
thoroughly and we have come up with some interesting observations. Considering
the {\it{relative}} strength of the noncommutative effects, we have shown that
there is a universal character in the noncommutative correction to the magnetic
field - it depends {\it{only}} on . On the other hand, in the cases of
all other observables of physical interest, such as the potential profile,
soliton mass or the electric field, as well as , (comprising
solely of commutative Chern-Simons-Higgs model parameters), appear on similar
footings. This phenomenon is a new finding which has come up in the present
analysis.
Lastly, we have pointed out a generic problem in the NC extension of the
models, in the form of a mismatch between the BPS dynamical equation and the
full variational equations of motion, to . This mismatch indicates
that the analysis is not complete as it brings in to fore the ambiguities in
the definition of the energy-momentum tensor in a noncommutative theory.Comment: 21 page
The N = 16 spherical shell closure in 24O
The unbound excited states of the neutron drip-line isotope 24O have been
investigated via the 24O(p,p')23O+n reaction in inverse kinematics at a beam
energy of 62 MeV/nucleon. The decay energy spectrum of 24O* was reconstructed
from the momenta of 23O and the neutron. The spin-parity of the first excited
state, observed at Ex = 4.65 +/- 0.14 MeV, was determined to be Jpi = 2+ from
the angular distribution of the cross section. Higher lying states were also
observed. The quadrupole transition parameter beta2 of the 2+ state was
deduced, for the first time, to be 0.15 +/- 0.04. The relatively high
excitation energy and small beta2 value are indicative of the N = 16 shell
closure in 24O.Comment: to be submitted to Physical Review Letter
Recommended from our members
Comparison of Interactions Between Control and Mutant Macrophages
This paper presents a preliminary study on macrophages migration in Drosophila embryos, comparing two types of cells. The study is carried out by a framework called macrosight which analyses the movement and interaction of migrating macrophages. The framework incorporates a segmentation and tracking algorithm into analysing motion characteristics of cells after contact. In this particular study, the interactions between cells is characterised in the case of control embryos and Shot3 mutants, where the cells have been altered to suppress a specific protein, looking to understand what drives the movement. Statistical significance between control and mutant cells was found when comparing the direction of motion after contact in specific conditions. Such discoveries provide insights for future developments in combining biological experiments to computational analysis
Computationally Efficient Implementation of Convolution-based Locally Adaptive Binarization Techniques
One of the most important steps of document image processing is binarization.
The computational requirements of locally adaptive binarization techniques make
them unsuitable for devices with limited computing facilities. In this paper,
we have presented a computationally efficient implementation of convolution
based locally adaptive binarization techniques keeping the performance
comparable to the original implementation. The computational complexity has
been reduced from O(W2N2) to O(WN2) where WxW is the window size and NxN is the
image size. Experiments over benchmark datasets show that the computation time
has been reduced by 5 to 15 times depending on the window size while memory
consumption remains the same with respect to the state-of-the-art algorithmic
implementation
- …
