The absence of large scale datasets with pixel-level supervisions is a
significant obstacle for the training of deep convolutional networks for scene
text segmentation. For this reason, synthetic data generation is normally
employed to enlarge the training dataset. Nonetheless, synthetic data cannot
reproduce the complexity and variability of natural images. In this paper, a
weakly supervised learning approach is used to reduce the shift between
training on real and synthetic data. Pixel-level supervisions for a text
detection dataset (i.e. where only bounding-box annotations are available) are
generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which
provides pixel-level supervisions for the COCO-Text dataset, is created and
released. The generated annotations are used to train a deep convolutional
neural network for semantic segmentation. Experiments show that the proposed
dataset can be used instead of synthetic data, allowing us to use only a
fraction of the training samples and significantly improving the performances