Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at
about 70 MeV/u have been investigated by measuring the momentum vectors of the
incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy
spectra as well as the angular distributions of the 10Be+n center of mass have
been extracted for both targets. For the breakup on Pb target, the selection of
forward scattering angles is found to be effective to extract almost purely the
first-order E1 Coulomb breakup component, and to exclude the nuclear
contribution and higher-order Coulomb breakup components. This angle-selected
energy spectrum is thus used to deduce the spectroscopic factor for the
10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with
B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to
Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained
spectroscopic factor. The non-energy weighted sum rule is used to extract the
root mean square distance of the halo neutron to be 5.77(16) fm, consistent
with previously known values. In the breakup with C target, we have observed
the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41
MeV. Angular distributions for these states show the diffraction pattern
characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for
these states. We finally find that even for the C target the E1 Coulomb direct
breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review