93 research outputs found

    Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing

    Get PDF
    The present study aims at introducing reconfigurable mechanical metamaterials by utilising four-dimensional (4D) printing process for recoverable energy dissipation and absorption applications with shape memory effects. The architected mechanical metamaterials are designed as a repeating arrangement of re-entrant auxetic, hexagonal, and AuxHex unit-cells and manufactured using 3D printing fused deposition modelling process. The AuxHex cellular structure is composed of auxetic re-entrant and hexagonal components. Architected cellular metamaterials are developed based on a comprehension of the elasto-plastic features of shape memory polylactic acid materials and cold programming deduced from theory and experiments. Computational models based on ABAQUS/Standard are used to simulate the mechanical properties of the 4D-printed mechanical metamaterials under quasi-static uniaxial compression loading, and the results are validated by experimental data. Research trials show that metamaterial with re-entrant auxetic unit-cells has better energy absorption capability compared to the other structures studied in this paper, mainly because of the unique deformation mechanisms of unit-cells. It is shown that mechanical metamaterials with elasto-plastic behaviors exhibit mechanical hysteresis and energy dissipation when undergoing a loading-unloading cycle. It is experimentally revealed that the residual plastic strain and dissipation processes induced by cold programming are completely reversible through simple heating. The results and concepts presented in this work can potentially be useful towards 4D printing reconfigurable cellular structures for reversible energy absorption and dissipation engineering applications

    Genital herpes evaluation by quantitative TaqMan PCR: correlating single detection and quantity of HSV-2 DNA in cervicovaginal lavage fluids with cross-sectional and longitudinal clinical data

    Get PDF
    Abstract Objective To evaluate the utility of a single quantitative PCR (qPCR) measurement of HSV (HSV-1&2) DNA in cervicovaginal lavage (CVL) specimens collected from women with predominantly chronic HSV-2 infection in assessing genital HSV shedding and the clinical course of genital herpes (GH) within a cohort with semiannual schedule of follow up and collection of specimens. Methods Two previously described methods used for detection of HSV DNA in mucocutaneous swab samples were adapted for quantification of HSV DNA in CVLs. Single CVL specimens from 509 women were tested. Presence and quantity of CVL HSV DNA were explored in relation to observed cross-sectional and longitudinal clinical data. Results The PCR assay was sensitive and reproducible with a limit of quantification of ~50 copies per milliliter of CVL. Overall, 7% of the samples were positive for HSV-2 DNA with median log10 HSV-2 DNA copy number of 3.9 (IQR: 2.6-5.7). No HSV-1 was detected. Presence and quantity of HSV-2 DNA in CVL directly correlated with the clinical signs and symptoms of presence of active symptomatic disease with frequent recurrences. Conclusion Single qPCR measurement of HSV DNA in CVL fluids of women with chronic HSV-2 infection provided useful information for assessing GH in the setting of infrequent sampling of specimens. Observed positive correlation of the presence and quantity of HSV-2 DNA with the presence of active and more severe course of HSV-2 infection may have clinical significance in the evaluation and management of HSV-2 infected patients

    Broad environmental tolerance of native root- nodule bacteria of Biserrula pelecinus indicate potential for soil fertility restoration

    Get PDF
    Background: Biserrula pelecinus is an annual legume native to the Mediterranean basin, found in pastureland, alone or in association with other legumes (Leguminosae) and grasses (Poaceae). It has been used in revegetation programmes of mining wastes showing phytoremediation potentials and thus becoming potentially highly attractive for plant ecology and restoration management of natural ecosystems. Aims: To characterise native root-nodule bacteria isolated from B. pelecinus from the Iberian Peninsula, and to select suitable N fixers for field-application and soil rehabilitation. Methods: Strains were isolated and molecularly identified by 16S rRNA amplification and sequencing. Strains were phenotypically characterised in different abiotic conditions (acidity, salinity and heavy metals) and tested for their ability to fix atmospheric N2. The most suitable N fixers were applied in greenhouse experiments with B. pelecinus under different fertilization levels to assess their tolerance to fertilized and polluted soils, commonly encountered in restoration projects. Results: B. pelecinus root-nodule isolates tolerated pH from 4.5 to 9.5 grew in saline conditions (2.5% of NaCl), and tolerated 50 μM of Al3+ and Mn2+. Three isolates efficient in N2 fixation, relative to the reference Mesorhizobium strain, were considered excellent candidates for the amelioration of nutrient poor sites. Conclusions: These results provide valuable information for the potential use in soil restoration of B. pelecinus in a wide- range of conditions, exploiting the natural variability of its root-nodule bacteria

    Role of Fas/FasL in regulation of inflammation in vaginal tissue during HSV-2 infection

    Get PDF
    To assess the role of Fas in lesion development during genital HSV-2 infection, we used a well-established HSV-2 murine model applied to MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) C57BL6 mice. In vitro infection of murine keratinocytes and epithelial cells was used to clarify molecular details of HSV-2 infection. Despite upregulation of Fas and FasL, HSV-2-infected keratinocytes and epithelial cells showed a moderate level of apoptosis due to upregulated expression of the anti-apoptotic factors Bcl-2, Akt kinase and NF-κB. Inflammatory lesions within the HSV-2-infected epithelium of C57BL6 mice consisted of infected cells upregulating Fas, FasL and Bcl-2, uninfected cells upregulating Fas and neutrophils expressing both Fas and FasL. Apoptosis was detected in HSV-2-infected cells and to even higher extent in non-infected cells surrounding HSV-2 infection sites. HSV-2 infection of Fas- and FasL-deficient mice led to increased apoptosis and stronger recruitment of neutrophils within the infection sites. We conclude that the Fas pathway participates in regulation of inflammatory response in the vaginal epithelium at the initial stage of HSV-2 infection

    Solar pond powered liquid desiccant evaporative cooling

    Get PDF
    Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered
    corecore