805 research outputs found

    Parent-Child Interaction: Development of Measure for a Naturalistic Setting.

    Get PDF
    Parent-child interaction could arguably be the most important factor in child development, including academic achievement, behavior, and personality. This study suggests that the quantity of parent-child interaction is just as important as quality, and we test the reliability and validity of our instrument developed to quantitatively measure parent-child interaction in the home under realistic conditions. Twenty-eight children’s parents participated in the study over four days. Eight families had two research observers complete the instrument simultaneously with them, and reliability measures were taken between parents (74%), parent and one research-observers (78%), and two research observers (97%). Validity measures yielded scores of 78% for parents and 77% for colleagues. This study’s instrument was shown to be a simple and strongly reliable instrument for measuring children’s after-school activities and a reliable way to measure parent-child interactions indirectly, avoiding a social desirability response set

    Deer as a potential wildlife reservoir for Parachlamydia species.

    Get PDF
    Wildlife populations represent an important reservoir for emerging pathogens and trans-boundary livestock diseases. However, detailed information relating to the occurrence of endemic pathogens such as those of the order Chlamydiales in such populations is lacking. During the hunting season of 2008, 863 samples (including blood, conjunctival swabs, internal organs and faeces) were collected in the Eastern Swiss Alps from 99 free-living red deer (Cervus elaphus) and 64 free-living roe deer (Capreolus capreolus) and tested using ELISA, PCR and immunohistochemistry for members of the family Chlamydiaceae and the genus Parachlamydia. Parachlamydia spp. were detected in the conjunctival swabs, faeces and internal organs of both species of deer (2.4% positive, with a further 29.5% inconclusive). The very low occurrence of Chlamydiaceae (2.5%) was in line with serological data (0.7% seroprevalence for Chlamydia abortus). Further investigations are required to elucidate the zoonotic potential, pathogenicity, and distribution of Parachlamydia spp. in wild ruminants

    Orthogonal Polynomial Projectors for the Projector Augmented Wave Method of Electronic Structure Calculations

    Get PDF
    The projector augmented wave (PAW) method for electronic structure calculations developed by Blochl [Phys. Rev. B 50, 17 953 (1994)] has been very successfully used for density functional studies. It has the numerical advantages of pseudopotential techniques while retaining the physics of all-electron formalisms. We describe a method for generating the set of atom-centered projector and basis functions that are needed for the PAW method. This scheme chooses the shapes of the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ‘‘ghost state’’ problems, which can plague calculations of this kind. Electronic density of states results are presented for the mineral powellite (CaMoO4)

    Self-Consistent Pushing and Cranking Corrections to the Meson Fields of the Chiral Quark-Loop Soliton

    Get PDF
    We study translational and spin-isospin symmetry restoration for the two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we consider a boosted and rotating hedgehog soliton. Corrected classical meson fields are obtained by minimizing a corrected energy functional which has been derived by semi-classical methods ('variation after projection'). We evaluate corrected meson fields in the region 300 MeV \le M \le 600 MeV of constituent quark masses M and compare them with the uncorrected fields. We study the effect of the corrections on various expectation values of nuclear observables such as the root-mean square radius, the axial-vector coupling constant, magnetic moments and the delta-nucleon mass splitting.Comment: 19 pages, LaTeX, 7 postscript figures included using 'psfig.sty', to appear in Int.J.Mod.Phys.

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the ÎČ-subunit, αÎČ-monomer, (αÎČ)3-trimer and (αÎČ)0-hexamer species with the following chromophore assignments: ÎČ155 = 's’(sensitizer), ÎČ84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented-Plane-Wave Formalisms for Density-Functional Calculations of Solids

    Get PDF
    The projector augmented-wave (PAW) method was developed by Blöchl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his soft pseudopotential\u27\u27 formalism and in earlier work by Blöchl in his generalized separable potentials,\u27\u27 and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF2, fcc Ca, and bcc V. With the exception of CaF2, for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms

    Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    Get PDF
    We consider the excitation dynamics of the two-photon \sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \sts transition, and has an influence on the derivation of its absolute frequency.Comment: 10 pages, 5 figure

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik
    • 

    corecore