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Comparison of the projector augmented-wave, pseudopotential, and linearized
augmented-plane-wave formalisms for density-functional calculations of solids

N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109

~Received 8 July 1996!

The projector augmented-wave~PAW! method was developed by Blo¨chl as a method to accurately and
efficiently calculate the electronic structure of materials within the framework of density-functional theory. It
contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron
calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to
include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same
ideas developed by Vanderbilt in his ‘‘soft pseudopotential’’ formalism and in earlier work by Blo¨chl in his
‘‘generalized separable potentials,’’ and has been successfully demonstrated for several interesting materials.
We have developed a version of the PAW formalism for general use in structural and dynamical studies of
materials. In the present paper, we investigate the accuracy of this implementation in comparison with corre-
sponding results obtained using pseudopotential and linearized augmented-plane-wave~LAPW! codes. We
present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for
several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF2, fcc Ca,
and bcc V. With the exception of CaF2, for which core-electron polarization effects are important, the struc-
tural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential
formalisms.@S0163-1829~97!00404-9#

I. INTRODUCTION

The ‘‘projector augmented-wave’’~PAW! method was
developed by Blo¨chl1 as a method to accurately and effi-
ciently calculate the electronic structure of materials within
the framework of density-functional theory.9,10 It takes ad-
vantage of many of the ideas developed in the pseudopoten-
tial literature,11,12while retaining information about the cor-
rect nodal behavior of the valence electron wave functions
and has the ability to include upper core states in addition to
valence states in the self-consistent iterations. It uses many
ideas similar to those developed by Vanderbilt2 in his ‘‘soft
pseudopotential’’ formalism and by Blo¨chl3 in his earlier
work on ‘‘generalized separable potentials,’’ and has been
successfully demonstrated for several interesting
materials.1,4–6

We have developed a version of the PAW formalism for
general use in structural and dynamical studies of materials.
We have investigated this implementation as a function of
computational parameters and in comparison with corre-
sponding results obtained using pseudopotential7,11,13 and
linearized augmented-plane-wave8 ~LAPW! codes. The fo-
cus of this study is the numerical accuracy of the computa-
tional technique. Therefore, all calculations described in this
work were done using the exchange-correlation functional in
the local density approximation~LDA ! parametrized by Per-
dew and Wang.14 Extension of the current formalism to more
complicated exchange-correlation functionals15, or to include
relativistic and/or spin effects, should be straightforward.

There are several motivations for developing the PAW
formalism. A number of physical properties~such as mag-
netic properties, electronic matrix elements, for example!
should be calculated with a knowledge of the correct nodal

behavior of the valence electron wave functions. In addition,
there is evidence that it is sometimes necessary to improve
upon the accuracy of the pseudopotential approach for the
structural simulations of some materials.

Within the framework of density-functional theory,9,10

pseudopotential methods have been enormously successful
in performing structural studies of a wide variety of
materials.11,12 One contributing factor to this success is the
accuracy of the frozen core approximation16 for many of the
materials throughout the Periodic Table. In order to get a
more quantitative assessment of the accuracy of the frozen
core approximation, it is helpful to consider a systematic
study of atomic total energies calculated with a self-
consistent atomic structure code using the LDA parametrized
by Perdew and Wang.14 First, considersp bonding materials.
In Fig. 1 the error in calculating the energy to ‘‘promote’’ an
electron from thes to p shell within the frozen core approxi-
mation minus that of the fully self-consistent result is plotted
versus the numberx of sp valence electrons in the 2nd, 3rd,
and 4th rows of the Periodic Table. The error is less than 1
meV for elements in the 2nd row of the Periodic Table and
less than 10 meV for most of the other elements. It decreases
with increasingx, being larger for the alkali and alkaline-
earth metals than for the halides. There is a jump in the error
at x>3 for Ga because of the completion of the 3d shell.
This error can be essentially eliminated by including the 3d
states as valence states in the self-consistent calculations. In
Fig. 2 the error in calculating the energy to ‘‘promote’’ an
electron from thes to d shell within the frozen core approxi-
mation minus that of the fully self-consistent result is plotted
versus the numberx of sd valence electrons in the 4th and
5th rows of the Periodic Table. Evidently, the frozen core
error is considerably larger forsd materials than it is for
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sp materials, and is larger for the 3d transition metals than
for the 4d transition metals. It is interesting that the error is
uniformly positive ~the promotion energy is larger in the
frozen core approximation than in a fully relaxed calcula-
tion! even though the promotion energy itself changes sign
for the sd materials atx56. For all of these materials, the
configuration energy error can be reduced by several orders
of magnitude by including the upper core states in the self-
consistent calculation.

Some examples of systems which have significant core-
electron contributions to the structural energy have appeared
in the literature. For example, Wright and Nelson17 noted
that it was necessary to include the 3d states to correctly
calculate the structural properties of GaN and other Ga-
containing materials. In our previous work,18 we found that

pseudopotential calculations for FeS2 determined the S-S
bond length to be more than 0.1 Å larger than the experi-
mental value, while all-electron calculations determined the
bond length to be substantially closer to the experimental
value. In the present paper, we find an even larger error in
the pseudopotential prediction of the equilibrium lattice con-
stant for CaF2 compared with than that predicted by all-
electron calculations. Clearly, it is sometimes necessary to
go beyond the pseudopotential approach for structural simu-
lations, as can be provided by the PAW formalism.

This paper is organized as follows. In Sec. II, we review
the general features of formalism developed by Blo¨chl.1 In
Sec. III, we describe our method for constructing the basis
and projector functions and present examples. In Sec. IV
results are presented for calculation of the electronic struc-
ture of a variety of materials including the insulators CaF2
and diamond; the semiconductors silicon and SiC; and the
metals calcium and vanadium. The summary and conclu-
sions are presented in Sec. V. Detailed formulas for the
Hamiltonian matrix elements and total valence energy are
presented in the Appendix.

II. GENERAL FORMALISM

In density functional theory9 for periodic solids, it is nec-
essary to calculate the self-consistent Bloch wave functions
Cnk(r ), wheren andk denote band index and wave vector,
respectively. In the PAW formalism, all variational calcula-
tions are performed on smooth wave functionsC̃nk(r ),
which are designed to be represented in plane-wave expan-
sions. The conversion between the smooth wave functions
and the corresponding wave functions having the correct
nodal form is achieved through the use of a set of three types
of functions defined for each atoma: the ‘‘all-electron’’
~AE! basis functionsf i

a(r ),19 the ‘‘pseudo’’ ~PS! basis func-
tions f̃ i

a(r ), and the projector functionsp̃i
a(r ). Blöchl1 de-

fined these functions to have the following properties. The
AE and PS basis functions are chosen such that

f̃ i
a~r !5f i

a~r ! for r>r c
a , ~1!

wherer c
a is the radius of a nonoverlapping sphere about the

atomic sitea. Because of the cancellation property~1!, the
basis functionsf i

a and f̃ i
a are never evaluated beyond

r.r c
a , although they are continuous for allr . The projector

functions vanish forr.r c
a and satisfy the complementary-

orthogonality property:

^ p̃i
auf̃ j

a&5d i j . ~2!

Within the constraints defined in Eqs.~1,2!, there is consid-
erable freedom in the choice of the atomic functions
$f i

a, f̃ i
a , andp̃i

a%. The choices used in the present work will
be described in Sec. III below. In terms of these functions,
the full Bloch wave functionCnk(r ) can be calculated from
the smooth wave functionC̃nk(r ) using the relation

Cnk~r !5C̃nk~r !1(
a,i

@f i
a~r2Ra!2f̃ i

a~r2Ra!#^ p̃i
auC̃nk&,

~3!

whereRa denotes the atomic position within a unit cell.

FIG. 1. Configuration energy error in meV corresponding to
frozen core minus all-electron total energy differences
E(nssnpx2s→nss21npx2s11), where x denotes the number of
sp valence electrons in the neutral atom,s is 1 for the alkali metal
atoms and 2 otherwise, andn is the principal quantum number 2, 3,
or 4.

FIG. 2. Configuration energy error in meV corresponding to
frozen core minus all-electron total energy differences
E@ns2(n21)dx22→ns1(n21)dx21#, wherex denotes the number
of sd valence electrons in the neutral atom andn denotes the prin-
cipal quantum number 4 or 5.
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The PAW formalism is designed so that the valence-
electron density can be calculated as a sum of three contri-
butions:

n~r !5ñ~r !1n1~r !2ñ1~r !. ~4!

In Eq. ~4!, the first term represents the pseudodensity which
can be represented by a plane-wave expansion throughout
the unit cell. Specifically, the smooth density is given by

ñ~r ![(
nk

f nkuC̃nk~r !u2, ~5!

wheref nk denotes the occupancy factor. The last two contri-
butions to Eq.~4! are designed to exactly cancel each other
in the region outside the atomic spheres and to correct the
density for the correct nodal behavior in the vicinity of each
atom. The ‘‘one-center’’ terms can each be represented as a
sum of atomic contributionsn1(r )[(an

a(r2Ra) and
ñ1(r )[(añ

a(r2Ra). The atomic density terms are given by

na~r ![ (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&f i
a~r !*f j

a~r !, ~6!

for the contribution having the correct nodal form, and

ña~r ![ (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&f̃ i
a~r !* f̃ j

a~r !, ~7!

for the corrections toñ.
Blöchl derived the PAW formalism by writing the valence

energy for the system in terms of three contributions corre-
sponding to the density form:

E5Ẽ1E12Ẽ1. ~8!

The valence energy Eq.~8! represents the energy of the va-
lence electrons interacting with themselves, with the atomic
nuclei having atomic numberZa, and with the core electrons
of the system which are assumed to be ‘‘frozen’’ in the same
functional form as in the atom.20 The three contributions can
be written as follows.

Ẽ depends upon the evaluation of the smooth density
functions throughout the unit cell:

Ẽ5(
nk

f nkK C̃nkU2 \2

2m
¹2UC̃nkL

1
e2

2 E E d3r d3r 8
@ ñ~r !1n̂~r !#@ ñ~r 8!1n̂~r 8!#

ur2r 8u

1e2E E d3r d3r 8
ñ~r !ñcore~r 8!

ur2r 8u
1E d3r ñ~r !ṽ loc~r !

1
e2

2 E E d3r d3r 8
ñcore~r !ñcore~r 8!

ur2r 8u
1Exc@ ñ1ñcore#.

~9!

The ‘‘one-center’’ contributions to Eq.~8! can each be
represented as a sum of atomic termsE1[(aE

a and
Ẽ1[(aẼ

a, wherea indexes all the atoms of the unit cell.
Each one-center contribution,Ea and Ẽa, is evaluated with
all integrals involved with evaluating the valence density

contributions, confined within a sphere of radiusr c
a about the

atom a. It can be shown that integrand of the difference
energyEa2Ẽa converges smoothly to zero at the sphere
boundary atr c

a .
Ea represents the energy contribution inside the atomic

spherea:

Ea5 (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&K f i
aU2 \2

2m
¹2Uf j

aL
1
e2

2 E E
r ,r 8<r c

a
d3r d3r 8

na~r !na~r 8!

ur2r 8u

1E
r<r c

a
d3r na~r !@v ion

a ~r !1 ṽcore~r !#

1Exc@n
a1ncore

a 2ñcore
a 1ñcore#2Exc@ncore

a #. ~10!

Ẽa subtracts out the smooth density contributions in-
cluded in Eq.~9! within atomic spherea and includes addi-
tional Coulombic corrections terms:

Ẽa5 (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&K f̃ i
aU2 \2

2m
¹2Uf̃ j

aL
1
e2

2 E E
r ,r 8<r c

a
d3r d3r 8

ña~r !ña~r 8!

ur2r 8u

1E
r<r c

a
d3r ña~r !@ v̂a~r !1 ṽcore~r !#

1E
r<r c

a
d3r ña~r !ṽ loc

a ~r !

1Êa1Ẽcore
a 1Ẽcore

a0 1Exc@ ñ
a1ñcore#. ~11!

In the above equations,Exc denotes the exchange-
correlation energy function which depends on the density
argument.10,21 In addition to depending on the valence den-
sity contributions~5, 6, and 7!, the energy evaluation in-
cludes the frozen core density, a ‘‘compensation’’ charge
density, and an arbitrary localized potential as discussed be-
low.

The frozen core densityncore
a (r ) associated with sitea is

expected to be mostly contained within the atomic sphere
r c
a , however, because electrostatic effects are strong, a small
extension of the core density beyondr c

a can have an appre-
ciable effect on the binding energy. We approximate these
effects within the spirit of the frozen core approximation, by
superposing the atomic core densities. For this purpose, it is
convenient to define a spherically symmetric smooth core
tail function associated with sitea:

ñcore
a ~r ![H Gae2gar2/4p for r<r c

a

ncore
a ~r ! for r>r c

a , ~12!

where Ga and ga are adjustable constants. This form has
been previously used for LAPW calculations.22 In terms of
the smooth core tail function, a smooth frozen core density
function ñcore(r ) can be formed from a lattice superposition,
which can be easily evaluated in Fourier space:

55 2007COMPARISON OF THE PROJECTOR AUGMENTED WAVE . . .



ñcore~r !5
1

V(G nD core~G!eiG–r,

where

nD core~G![(
a

e2 iG–RanD core
a ~G!,

with

nD core
a ~G![E

0

`

dr 4pr 2ñcore
a ~r ! j 0~Gr !, ~13!

whereV is the volume of the unit cell,Ra denotes a lattice
site, andj 0(Gr) denotes the spherical Bessel function. The
core tail potential which appears in Eqs.~10! and ~11! is
easily evaluated in Fourier space:

ṽcore~r !5
4pe2

V (
GÞ0

nD core~G!

G2 eiG–r, ~14!

where theG50 contribution must be treated separately as
discussed below. The localized portion of the frozen core
density contributes to Eq.~10! in the form of the ionic Cou-
lomb potential for atoma ~with atomic numberZa):

v ion
a ~r ![e2E

r 8<r c
a
d3r 8

nion
a ~r 8!

ur2r 8u
,

where

nion
a ~r ![2Za d~r !1@ncore

a ~r !2ñcore
a ~r !#. ~15!

Blöchl introduced a ‘‘compensation’’ charge densityn̂a in
order to represent, in a physically correct and mathematically
convenient form, the total charge within each atomic sphere
a other than that represented by the smooth charge densities
ña and ñcore

a The total compensation charge density is given
as the sum of atomic contributionsn̂(r )[(an̂

a(r2Ra) de-
fined according to

n̂a~r2Ra![(
LM

QLM
a YLM~r2Râ)gL

a~ ur2Rau!. ~16!

In Eq. ~16!, the coefficientsQLM
a represent the multipole

moments of the compensation charge:

QLM
a [~2Za1Qcore

a !dL0dM0

1A4pE
~r<r c

a
!
d3r YLM* ~ r̂ !r L@na~r !2ña~r !#,

~17!

whereQcore
a is the core charge localized within the atomic

sphere,

Qcore
a [E

r<r c
a
d3r @ncore

a ~r !2ñcore
a ~r !#, ~18!

and where the integrals in Eqs.~17! and ~18! are taken over
a sphere of radiusr c

a centered at atoma. Since the compen-
sation charge is used to represent the correct Coulombic po-
tential outside the atomic spheres, its functional form inside

the spheres is arbitrary. It is convenient to choose a normal-
ized form based on a Gaussian timesr L:

gL
a~r ![NLr

Le2r2/sa
2
,

where

NL[FA4pE
0

`

dr r 2~L11!e2r2/sa
2G21

. ~19!

Heresa is a width parameter adjusted so thatgL
a(r )'0 for

r>r c
a . In Eq. ~11!, v̂a denotes the Coulomb potential of the

compensation charge densityn̂a, and Êa denotes the corre-
sponding self-energy correction:

v̂a~r ![e2E d3r 8
n̂a~r 8!

ur2r 8u
and

Êa[
e2

2 E d3r d3r 8
n̂a~r !n̂a~r 8!

ur2r 8u
. ~20!

Additional Coulombic correction terms appear in Eq.
~11!. The termẼcore

a represents ion-core interactions minus
the corresponding self-energy corrections:

2Ẽcore
a [E d3r n ion

a ~ ur2Rau!@ ṽcore~r !2 ṽcore
a ~ ur2Rau!#

2
e2

2 E E d3r d3r 8
ñcore
a ~r !ñcore

a ~r 8!

ur2r 8u
. ~21!

In this expressionṽcore ~14! represents the potential due to
the superposed core densities, while theṽcore

a term subtracts
out the potential due to the smooth core density function
ñcore
a associated with the sitea. By subtracting out self-

Coulomb interactions, the net ionic contributions of this cal-
culation are equivalent to that evaluated via an Ewald23 sum-
mation in other formulations.24

Because the analysis represents a system with no net
charge, the Coulomb energy is well defined. However, spe-
cial care is needed for evaluating theG50 contributions.
The compensation charge~16! has been defined so that the
sum of the smooth charge density plus the core tail density
plus the compensation charge density represent a neutral sys-
tem: * d3r @ ñ(r )1ñcore(r )1n̂(r )#50. Also by construction
~16!, the sum of ionic charges plus valence difference charge
minus the compensation charge also form a neutral system:
* d3r @nion

a (r )1na(r )2ña(r )2n̂a(r )#50. However, in col-
lecting all the terms involved with evaluating the Coulomb
interaction in reciprocal space, one finds a nonvanishing con-
tribution of the form

2Ẽcore
a0

[
4pe2ñcore~0!

V lim
G→0

F @ n̄ion
a ~G!1n̄a~G!2nD a~G!2 n̂̄ a~G!#

G2 G .
~22!

The energy expressions of Eqs.~9!, ~11! include an extra
potential term introduced in the original formulation of
Blöchl1 of the formṽ loc(r )[(aṽ loc

a (r2Ra), whereṽ loc
a is an

arbitrary potential localized within ther c
a radius of atoma.
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This localized potential introduces no net contribution to the
energy and in the present work was set identically to zero.

The self-consistent Schro¨dinger equations were obtained
by Blöchl1 by applying the variational principle for the
smooth wave functionsC̃nk(r ) to minimize the valence en-
ergy ~8! subject to the appropriate orthonormality con-
straints. The resulting equations take the form of a general-
ized eigenvalue problem:

H̃ C̃nk~r !5«nkÕ C̃nk~r !. ~23!

The effective Hamiltonian operator can be expressed in the
form

H̃[H̃PW1 (
a,~ i , j !

u p̃i
a&Di j

a ^ p̃ j
au. ~24!

The first term has the form of a local pseudopotential Hamil-
tonian:

H̃PW[2
\2

2m
¹21 ṽeff~r !, ~25!

where the smooth effective potential is given by

ṽeff~r ![e2E d3r 8
@ ñ~r 8!1ñcore~r 8!1n̂~r 8!#

ur2r 8u
1 ṽ loc~r !

1mxc@ ñ~r !1ñcore~r !#, ~26!

where mxc represents the exchange-correlation potential.10

The orthonormality matrix in Eq.~23! is given by

Õ[11 (
a,~ i , j !

u p̃i
a&Oi j

a ^ p̃ j
au,

where

Oi j
a[^f i uf j&2^f̃ i uf̃ j&. ~27!

The one-center contributions to the effective Hamiltonian
~24! are functionally similar to nonlocal pseudopotential
terms. For each atom, they can be expressed in terms of AE
or PS matrix elements:

Di j
a5Hi j

a2H̃ i j
a ,

where,

Hi j
a[^f i

auHauf j
a&

and

H̃ i j
a[^f̃ i

auH̃auf̃ j
a&. ~28!

These terms are discussed in more detail in the Appendix. In
the present work, studying systems with fixed atomic posi-
tions $Ra%, self-consistent solutions to Eq.~23! were ob-
tained with a combination of direct diagonalization using a
combination of the Davidson-Liu algorithm25 and conjugate
gradient12 techniques.

III. PAW BASIS AND PROJECTOR FUNCTIONS

A. Formalism

The PAW method depends upon finding basis and projec-
tor functions. There have been several suggestions by
Blöchl1 and his collaborators4 for constructing the basis and
projector functions. The procedure that we have found to
work well is similar to that developed by Vanderbilt2 in his
soft pseudopotential technique and is also similar to ‘‘gener-
alized separable potentials’’ developed in an earlier work of
Blöchl.3

The starting point of the construction is the solution of the
all-electron self-consistent Schro¨dinger equation for the
atom.26,27 Since the atom has spherical symmetry, the inter-
esting part of a AE basis function is its radial function
fni l i
a (r ), although the complete set of basis functions is com-

posed of products of the radial function and the appropriate
spherical harmonic functions: f i

a(r )
[„fni l i

a (r )/r …Yl imi
( r̂ ).19 In general, the radial AE basis func-

tions $fni l i
a (r )% are chosen as the valence eigenstates of the

AE Schrödinger equation; their corresponding energies are
denoted by$«ni l i

a %. For atoms with upper core states which

are involved in the bonding, it is necessary to include these
states among the basis functions. In some cases, it may also
be necessary to include some unbound states among the basis
functions. For simplicity in notation, the indexni is used to
denote the principal quantum number for bound states and is
extended to enumerate any continuum states included in the
basis set. All evaluations with these functions are confined to
the regionr<r c

a . For eachl value, at most two radial basis
functions were needed for all of the systems we have studied
so far.

For each radial AE basis functionfni l i
a (r ), the corre-

sponding radial PS basis function is chosen to have a poly-
nomial form

f̃ni l i
a ~r !5r l i11 (

n50

N21

anr
2n, ~29!

whereN is an even number between 4 and 10, and where the
coefficients an are determined from the following two
matching sets of conditions:

f̃ni l i
a ~r k!5fni l i

a ~r k!, ~30!

and

2
\2

2m S d2drk2 2
l i~ l i11!

r k
2 D f̃ni l i

a ~r k!

5@«ni l i
a 2veff

a ~r k!#fni l i
a ~r k!, ~31!

whereveff
a (r ) is the all-electron self-consistent effective po-

tential for the spherically symmetric atom, which is given by

veff
a ~r ![2

e2Za

r
1e2E d3r 8

@na~r 8!1ncore
a ~r 8!#

ur2r 8u

1mxc@n
a~r !1ncore

a ~r !#. ~32!
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The N equations corresponding to Eqs.~30! and ~31!,
expressed in terms of the polynomial expansion~29!, are
solved simultaneously atN/2 consecutive numerical mesh
points $r k%, where k0<k,k01N/2, and r k0<r c

a to deter-

mine theN coefficients$an%. The first set of equations~30!
ensures that the cancellation condition~1! is satisfied for the
first (N21)/2 derivatives of the PS basis function, while the
second set of equations~31! ensures that the projector func-
tions are well behaved.

Using the radial PS basis functions~29!, we can construct
the radial projector functions using the same functions devel-
oped by Vanderbilt2 for his soft nonlocal pseudopotential
which are also very similar to Blo¨chl’s ‘‘generalized sepa-
rable potentials.’’3 For each atoma and angular momentum
l , the matrix elements of the PS basis functions can be de-
fined:

Bnn8
al [E

0

r c
a

dr f̃nl
a ~r !F2

\2

2m S d2dr2 2
l ~ l11!

r 2 D
1 ṽeff

a ~r !2«n8 l
a G f̃n8 l

a
~r !, ~33!

whereṽeff
a (r ) is the atomic PS effective potential given by

ṽeff
a ~r ![ v̂a~r !1e2E d3r 8

@ ña~r 8!1ñcore
a ~r 8!#

ur2r 8u
1 ṽ loc

a ~r !

1mxc@ ñ
a~r !1ñcore

a ~r !#, ~34!

where the potential due to the ‘‘compensation’’ charge of the
atom is given byv̂a(r )5e2 Q00

a erf(r /sa)/r . In the present
work, we have set the arbitrary localized potentialṽ loc

a (r )
identically equal to zero. Since, by construction,
veff
a (r )[ ṽeff

a (r ) for r>r c
a , the integrand in Eq.~33! vanishes

as r→r c
a . The radial projector functions can be defined:

p̃nl
a ~r ![(

n8
F2

\2

2m S d2dr2 2
l ~ l11!

r 2 D
1 ṽeff

a ~r !2«n8 l
a G f̃n8 l

a
~r ! ~Bal!n8n

21 . ~35!

For the same reason that the argument of Eq.~33! vanishes
asr→r c

a , the radial projector function,p̃nl
a (r ), also vanishes

for r.r c
a . The radial projector functions calculated from Eq.

~35! are related to the full projector functions according to
p̃i
a(r )[„p̃ni l i

a (r )/r …Yl imi
( r̂ ). This construction of the projec-

tor functions is very similar to the ‘‘local wave function’’
ub i& defined by Vanderbilt.2 With this choice, the second
term of the effective Hamiltonian~24! is essentially the same
as the nonlocal potential operator defined by Vanderbilt.2

Provided thatn̂a(r )[0 for r>r c
a , the projector function~35!

vanishes forr>r c
a and satisfies the quasiorthonormality con-

dition ~2!. It is constructed so that the PS basis functions
$f̃ i

a(r )% are exact solutions to the PAW Schro¨dinger Eq.
~23!. This formulation of the projector functions is consistent
with the guidelines developed by Blo¨chl.

With the above scheme for constructing the atomic func-
tions, the accuracy and convergence of the calculation is con-
trolled by the following considerations.

~a! The set of the radial AE basis functions$fni l i
a % should

be chosen to completely represent the valence wave func-
tions within the atomic spheres. As discussed below, it is
sometimes necessary to augment this set of functions with
the upper core functions and some continuum functions for
higher angular momentum components.

~b!The atomic radiir c
a should be chosen to be as large as

possible to facilitate the convergence of the smooth functions
in Fourier space, but there must be no overlap of atomic
spheres for all structures to be studied.

~c! The shape of each PS basis functions$f̃ni l i
a % and the

corresponding projector function$ p̃ni l i
a % can be controlled by

adjusting the matching pointr k0 and the numberN of match-

ing coefficients$an% used to satisfy equations~30! and~31!.
In general the best numerical properties are obtained by en-
suring that for a given angular momentum componentl i , the
first projector function$ p̃ni l i

a % has no nodes, the second has

one node, etc., since the projector functions take the role of
an approximate orthogonal function expansion.

It is convenient to choose one value of the atomic radius
r c
a for each atom, while the parametersr k0 and N can be

different for each radial AE functionfni l i
a . Although the

shapes of the functions are sensitive to the choice of these
parameters, the total energy is not sensitive.

B. Example functions

Blöchl1,3 showed and we have verified that it is generally
possible to perform accurate calculations with a minimal ba-
sis including one set of PAW functions for eachni l i upper
core and valence orbital. In addition, it is sometimes impor-
tant to augment this ‘‘minimal’’ basis with some continuum
states. For example, for Si, it was necessary to include a
continuuml52 function which we denoteed. In Table I are
listed some representative PAW basis parameters and their
corresponding configuration energy errors. From this table, it
is apparent that for atomic calculations, this procedure makes
it possible to achieve an accuracy close to the accuracy of the
frozen core approximation itself. With the exception of the
valence-only basis set of V, all of these functions correspond
to a configuration energy error of less than a few meV. For
the valence-only basis set of V, the configuration energy er-
ror is less than14th of the error in the frozen core approxima-
tion.

Plots of the PAW functions are shown for V in Figs. 3
and 4, comparing the set including the valence functions
$4s, 4p, 3d% only and the more complete set including the
upper core and valence functions$3s, 4s, 3p, 4p, 3d%,
respectively. These functions were constructed using the pa-
rameters listed in Table I. The shapes of these functions are
representative of those of the other atoms listed in Table I.

From the atomic analysis of the accuracy of the configu-
ration energies, as well as the accuracy of the energy eigen-
values and logarithmic derivatives, we expect that the set
including the upper core states~Fig. 4! will give more accu-
rate results than the valence only set~Fig. 3!. In fact, the
valence-only set was found to suffer from ‘‘ghost’’ states28,29

and therefore yielded no meaningful results.
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The problem of ghost states for separable nonlocal
pseudopotentials has been well documented in the
literature.8,28,29 Since the PAW Hamiltonian has the same
mathematical form, it is also subject to this problem. Table I
indicates which of the PAW function sets are found to have
caused ghost states in solid state calculations involving that
atom. For both Ca and V, we investigated a range of PAW
parameters in an unsuccessful attempt to generate ghost-free

valence-only basis sets. However, for each of these materials
the more complete basis set, which included the upper core
states, was not only ghost free but also more accurate accord-
ing to the atomic criteria.

However, since the ghost problem has been identified in
this formulation of the PAW formalism, one is motivated to
find ways of improving the PAW basis function construction
algorithm. One possibility might be that a convenient form
for the localized potential functionsṽ loc

a (r ) could reduce the
ghost problem. This will be considered in future work.

TABLE I. List of PAW basis function parameters for atoms in this study. Radial parametersr c
a andr k0 are

given in bohr units. Errors in thesp or sd ‘‘promotion’’ energies~as defined in the figure captions of Figs.
1 and 2! are listed in order to indicate the accuracy of the calculations.DEPAW ~in meV units! indicates the
magnitude of the difference between the ‘‘promotion’’ energy calculated using the PAW formalism relative
to that of a frozen core calculation.DErelax ~in meV units! indicates the magnitude of the difference between
the ‘‘promotion’’ energy calculated using the frozen core approximation relative to that of the fully relaxed
result.

Atom (Z) r c
a $Basis functions (r k0)% DEPAW DErelax Ghost states ?

C ~6! 1.2 $2s(1.2),2p(0.85)% 0.04 0.46 no

F ~9! 1.2 $2s(1.2),2p(0.8)% 2.04 0.47 no

Si ~14! 2.2 $3s(2.2),3p(2.0),ed(1.4)% 0.95 0.78 no

Ca ~20! 3.6 $4s(3.6),4p(3.6),3d(2.0)% 0.88 3.06 yes

Ca ~20! 2.7 $3s(2.7),4s(2.7),3p(2.7),4p(2.7),3d(1.5)% 0.06 0.00 no

V ~23! 2.3 $4s(2.3),4p(2.3),3d(1.25)% 17.05 85.99 yes

V ~23! 2.1 $3s(2.1),4s(2.1),3p(2.1),4p(2.1),3d(1.0)% 3.01 0.28 no

FIG. 3. Vanadium PAW functions for a minimal basis set~va-
lence only!, including 4s, 4p, and 3d functions; with the dashed
line indicatingfni l i

(r ), the thin solid line indicatingf̃ni l i
(r ), and a

thick solid line indicating a scaled plot ofp̃ni l i(r ). This set of func-
tions was constructed using the calculational parameters listed in
Table I, and has ghost state difficulties.

FIG. 4. Vanadium PAW functions for an accurate basis set~in-
cluding upper core states!, including 3s, 4s, 3p, 4p, and 3d func-
tions; with the dashed line indicatingfni l i

(r ), the thin solid line

indicating f̃ni l i
(r ), and the thick solid line indicating a scaled plot

of p̃ni l i(r ). This set of functions was constructed using the calcula-
tional parameters listed in Table I, and has no ghost state difficul-
ties.
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IV. RESULTS FOR SOME REPRESENTATIVE COVALENT
AND IONIC MATERIALS

In order to check the accuracy of the PAW formalism for
bulk materials, we have carried out a series of density-
functional calculations, comparing results obtained using the
PAW code with that obtained using LAPW~Ref. 8! and
mixed-basis pseudopotential7,13 codes. The PAW calcula-
tions were performed using the larger basis sets described in
Table I. Care was taken to ensure that all the calculations
were equivalently converged. All Brillouin zone integrals
were performed using a uniform sampling ofk points with a
Gaussian weighting scheme.30 Results for the calculated co-
hesive energies versus lattice constant are plotted in Fig. 5,
showing results for diamond, silicon, SiC, and CaF2, fcc Ca,
and bcc V. These results were fit to Murnaghan’s equation31

to obtain values of the cohesive energy, lattice constant, and
bulk modulus summarized in Table II. In calculating the co-
hesive energies, no corrections were made for atomic mul-
tiplet energies, or zero point motion. As expected,15 the LDA
results predict a smaller lattice constant and larger cohesive
energies and bulk moduli than the experimental values.
While focus of the present study is on the comparison of the
three calculation schemes to each other, it is gratifying to
note that the present results are also consistent with previous

calculations.34–36Uniform shifts of the cohesive energies are
due to small sensitivies of the three methods to their calcu-
lational parameters such as muffin-tin or atomic sphere radii,
plane-wave cutoff’s, or partial-wave convergence. However,
with the exception of CaF2, the three methods give nearly
identically shaped plots of cohesive energy (2Ecoh) versus
lattice constant (a), as shown in Fig. 5, and very close values
for the equilibrium lattice constants~within 1%) and bulk
moduli ~within 5%), asshown in Table II.

For CaF2, the pseudopotential calculation predicts a lat-
tice constant which is 2%~more than 0.1 Å! smaller and a
bulk modulus which is 10220 % smaller than the PAW and
LAPW results. Since the pseudopotential calculation is a va-

TABLE II. Comparison of cohesive energies,Ecoh ~eV/atom!;
equilibrium lattice constants,a0 ~Å!; and bulk moduli,B ~GPa!
calculated using the PAW, LAPW, and pseudopotential formalisms.

Ecoh a0 B

Diamond PAW 10.16 3.54 460

LAPW 10.13 3.54 470

pseudopotential 10.13 3.54 460

experiment 7.37a 3.56a 443a

Silicon PAW 6.03 5.38 98

LAPW 5.92 5.41 98

pseudopotential 5.99 5.39 98

experiment 4.63a 5.43a 99a

SiC PAW 8.39 4.32 220

LAPW 8.29 4.33 230

pseudopotential 8.35 4.33 230

experiment 6.34b 4.36b 224b

CaF2 PAW 6.36 5.34 100

LAPW 6.30 5.33 110

pseudopotential 6.42 5.21 90

experiment 5.36c 5.445c 85-90c

fcc Ca PAW 2.24 5.32 19

LAPW 2.20 5.33 19

pseudopotential 2.14 5.37 20

experiment 1.84a 5.58a 15a

bcc V PAW 9.39 2.94 200

LAPW 9.27 2.94 200

pseudopotential 9.46 2.94 210

experiment 5.31a 3.03a 162a

aReference 32.
bReference 34.
cReference 33.

FIG. 5. Plot of the negative of the cohesive energy per atom~in
eV! versus lattice constant~in Å! for all of the materials in this
study, comparing results obtained using pseudopotential, LAPW,
and PAW codes. Results include V~bcc structure!, C and Si~dia-
mond structure!, SiC ~zinc blende structure!, Ca~fcc structure!, and
CaF2 ~fluorite stucture!.
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lence only calculation, while both the PAW and LAPW cal-
culations include the relaxation of the upper core electrons,
we can conclude that core effects are important for describ-
ing the structural properties of this system. This conclusion
is consistent with the configuration energy errors discussed
in Sec. I. An additional contributing factor for this system is
the fact that the valence levels of F~especially the 2s state!
are energetically close to the upper core levels (3s and 3p
states! of Ca.

One might have expected core relaxation effects to be
important in more of the systems that we have studied. For
fcc Ca, the structural errors of the valence-only~pseudopo-
tential! calculation are much smaller than that of CaF2. Fig-
ure 2 would lead one to expect a large core relaxation effect
for bcc V, but as shown in Fig. 5, this is not the case. We
would also have expected KF to have appreciable core relax-
ation effects. However, preliminary results indicate that core
relaxation effects are much less important for KF than for
CaF2.

V. SUMMARY AND CONCLUSIONS

In summary, we have successfully implemented a version
of the PAW method for electronic structure calculations. We
have calculated the cohesive energy as a function of lattice
constant for six representative crystals—diamond, silicon,
SiC, CaF2, fcc Ca, and bcc V. The results are consistent with
results obtained with the well-established LAPW and
pseudopotential electronic structure methods. For diamond,
silicon, SiC, fcc Ca, and bcc V the PAW results were essen-
tially the same as the LAPW and pseudopotential results. For
CaF2, there is an indication that the PAW approach is able to
represent the cohesive properties more accurately than can
the pseudopotential approach by including the contributions
from the upper core states of Ca. Further work is needed to
fine tune the construction algorithm for the PAW basis and
projector functions in order to avoid the problem of ghost
states.28,29

The present implementation is not yet optimized for effi-
ciency, and is similar in computation effort to the pseudopo-
tential approach. The results are encouraging for both the
inherent accuracy and efficiency of the PAW algorithm,
making it a very attractive method first-principles dynamical
calculations.4–6
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS

In using the PAW method for periodic systems, the
smooth wave functionC̃nk(r ) are conveniently represented
in terms of a plane-wave expansion:

C̃nk~r !5A1

V(G Ank~G!ei ~k1G!•r, ~A1!

whereV denotes the volume of the unit cell. The plane-wave
expansion coefficientsAnk(G) are then the variational pa-
rameters of the problem which are determined by evaluating
Eq. ~23! in a plane-wave representation. TheH̃PW contribu-
tion of the PAW Hamiltonian~25! can easily then be evalu-
ated in Fourier space using a formalism similar to that de-
veloped for pseudopotentials.24 The Fourier transform of the
smooth density ~5! can be represented by

nD ~G![E
V
d3r ñ~r !e2 iG–r. ~A2!

The Fourier transform of the compensation charge~16! den-
sity takes the form

n̄̂~G!5 (
a,LM

QLM
a YLM~Ĝ!e2 iG–Ra ḡL

a~G!, ~A3!

where

ḡL
a~G!5

A4p i2L

~2L11!!!
GLe2G2 sa

2/4. ~A4!

The Fourier transform of the core tail density has been de-
fined in Eq.~13!. The Fourier transform of the arbitrary lo-
calized potential function can be represented by

vD loc~G!5(
a

e2 iG–Ra vD loc
a ~G!,

where

vD loc
a ~G![E

0

`

dr 4pr 2ṽ loc
a ~r ! j 0~Gr !. ~A5!

In these terms, the smooth energy contribution~9! can be
evaluated using the same techniques as used in the pseudo-
potential formalism:24

Ẽ5
\2

2m(
nk

f nkS (
G

uAnk~G!u2 uk1Gu2D
1
2pe2

V (
GÞ0

unD ~G!1nD ~G!u21unD core~G!u2

G2

1
4pe2

V (
GÞ0

nD * ~G!nD core~G!

G2

1
1

V(G nD * ~G!vD loc~G!

1E
V
d3r @ ñ~r !1ñcore~r !#exc@ ñ~r !1ñcore~r !#,

~A6!

where the last term~the exchange-correlation contribution! is
evaluated by trapezoidal rule integration using the real space
fast Fourier transform grid.7 The corresponding Hamiltonian
function H̃PW ~25! can be written
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H̃PW52
\2

2m
¹21

4pe2

V (
GÞ0

@nD ~G!1 n̂̄~G!1nD core~G!#

G2 eiG–r1
1

V(G vD loc~G! eiG–r1mxc@ ñ~r !1ñcore~r !#. ~A7!

The contributions to the PAW Hamiltonian~23! from the
atomic basis and projector functions need some additional
consideration. In general, it is convenient to make use of
atomic parameters calculated and stored during the process
of constructing the basis and projector functions for each
atom.

The scalar constants that need to be stored for each atom
are Za, the atomic number;Qcore

a , the frozen core charge;
r c
a , the PAW matching radius;sa , the compensation charge
width parameter; andGa and ga, the core tail function pa-
rameters. The radial functions that need to be stored on radial
grid for each atom arencore

a (r ), the core density;$fni l i
a %, the

atomic AE basis functions;$f̃ni l i
a %, the corresponding PS ba-

sis functions; and$ p̃ni l i
a %, the corresponding projector func-

tions.
The ‘‘one-center’’ radial integrals that are needed in the

evaluation of the overlap and Hamiltonian matrix elements,
Oi j
a @Eq. ~27!# andDi j

a @Eq. ~28!#, are conveniently calcu-
lated and stored in the atomic calculation. Since the atomic
problem is spherically symmetric, all of the atomic matrix
elements are diagonal in themi andmj quantum numbers
and can be evaluated as radial integrals. In order to analyze
the necessary matrix elements for the full problem, it is help-

ful to decompose the difference Hamiltonian matrix elements
Di j
a into the following terms:

Di j
a5Ki j

a1^f i
auv ion

a uf j
a&2^f̃ i

auṽ loc
a uf̃ j

a&2^f̃ i
auv̂auf̃ j

a&

1@ ṽcore
a # i j1@VH

a # i j1@v0
a# i j1@VXC

a # i j , ~A8!

which will be defined below.
The Oi j

a @Ka# i j , ^f i
auv ion

a uf j
a&, and ^f̃ i

auṽ loc
a uf̃ j

a& matrix
elements are diagonal in thel i and l j quantum numbers. The
overlap matrix elements~27! depend on the integrals:

Oi j
a5d l i l jdmimj

Oni l i nj l j
a ,

where

Oni l i nj l j
a [E

0

r c
a

dr@fni l i
a ~r !fnj l j

a ~r !2f̃ni l i
a ~r !f̃nj l j

a ~r !#.

~A9!

The kinetic energy matrix elements~A8! depend on the in-
tegrals:

Ki j
a5d l i l jdmimj

Kni l i nj l j
a ,

where

Kni l i nj l j
a [S 2

\2

2mD E
0

r c
a

dr Ffni l i
a ~r !S d2dr2 2

l j~ l j11!

r 2 Dfnj l j
a ~r !2f̃ni l i

a ~r !S d2dr2 2
l j~ l j11!

r 2 D f̃nj l j
a ~r !G . ~A10!

The AE ionic potential~15! matrix element is given by

^f i
auv ion

a uf j
a&5d l i l jdmimj

@v ion
a #ni l i nj l j ,

where

@v ion
a #ni l i nj l j[E

0

r c
a

dr fni l i
a ~r !v ion

a ~r !fnj l j
a ~r !. ~A11!

The matrix element of the arbitrary localized potential is
given by

^f̃ i
auṽ loc

a uf̃ j
a&5d l i l jdmimj

@ ṽ loc
a #ni l i nj l j ,

where

@ ṽ loc
a #ni l i nj l j[E

0

r c
a

dr f̃ni l i
a ~r !ṽ loc

a ~r !f̃nj l j
a ~r !. ~A12!

The remaining Hamiltonian matrix elements are not diag-
onal in l i and l j . It is useful to define intermediate matrix
elements which depend upon a ‘‘total’’ angular momentum

L, whereu l i2 l j u<L<( l i1 l j ). For example, theLth moment
of the density matrix element:

nni l inj l j
aL [E

0

r c
a

dr r L@fni l i
a ~r !fnj l j

a ~r !2f̃ni l i
a ~r !f̃nj l j

a ~r !#

~A13!

is used in calculating the moments of the compensation
charge~17!. The radial part of the electrostatic potential cor-
responding to the Gaussian form~19!

v̂L
a~r ![

4pe2

2L11 F 1

r L11E
0

r

dr8 r 8L12gL
a~r 8!

1r LE
r

`

dr8 r 812LgL
a~r 8!G , ~A14!

can be evaluated analytically. In principle, this integral
should be confined within the atomic sphere, but because of
the localization of the Gaussian function, the integral can be
extended to infinity. The first few functions are
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v̂0
a~r ! 5

A4pe2

sa

erf~r /sa!

r /sa
,

v̂1
a~r ! 5

A4pe2

3sa
2 S erf~r /sa!

~r /sa!
2 2

2

Ap

e2~r /sa!2

~r /sa!
D ,

v̂2
a~r ! 5

A4pe2

5sa
3 Ferf~r /sa!

~r /sa!
3

2
2

3Ap
e2~r /sa!2S 21

3

~r /sa!
2D G . ~A15!

Then, the matrix elements involving the compensation
charge potential depend upon

v̂ni l inj l j
aL [E

0

r c
a

dr f̃ni l i
a ~r !v̂L

a~r !f̃nj l j
a ~r !. ~A16!

Finally, the matrix elements of the Hartree potential,
@VH

a # i j , depend on the four-index matrix elements:

Vni l inj l j ;nkl knl l l
aL [

4pe2

2L11E0
r c
a

dr E
0

r c
a

dr8
r,
L

r.
L11

3@fni l i
a ~r !fnj l j

a ~r !fnkl k
a ~r 8!fnl l l

a ~r 8!

2f̃ni l i
a ~r !f̃nj l j

a ~r !f̃nkl k
a ~r 8!f̃nl l l

a ~r 8!#.

~A17!

In summary, the following radial matrix elements are calcu-
lated and stored in the atomic calculation for each atom of
the extended system:$Oni l i nj l j

a %, $Kni l i nj l j
a %, $@v ion

a #ni l i nj l j%,

$@ ṽ loc
a #ni l i nj l j%, $@ ṽcore

a #ni l i nj l j%, $nni l inj l j
aL %, $v̂ni l inj l j

aL %, and

$Vni l inj l j ;nkl knl l l
aL %.

In order to evaluate the last five contributions to Eq.~A8!,
it is necessary to introduce intermediate quantities which de-
pend upon the angular variables of the problem. The
‘‘Gaunt’’ 37 coefficients are defined to be

Gl imi l jmj

LM [A4p E dV Yl imi
* ~ r̂ ! YLM* ~ r̂ ! Yl jmj

~ r̂ !.

~A18!

These coefficients are nonzero only whenM5mj2mi .
It is also useful to define projected occupation coefficients

according to the definition

Wij
a[(

nk
f nk^C̃nku p̃i

a&^ p̃ j
auC̃nk&. ~A19!

In order to evaluate these coefficients it is necessary to cal-
culate the projector overlap matrix elements^ p̃i

auC̃nk&. These
can then be evaluated as a sum over plane-wave coefficients:

^ p̃i
auC̃nk&5A1

V(G „4p i l iYl imi
* ~k1Ĝ!ei ~k1G!•Ra

3pD ni l i~ uk1Gu!… Ank~G!, ~A20!

where the Fourier transform of the radial part of the projector
function in the above equation is given by

pD ni l i~q!5E
0

r c
a

drr p̃ni l i~r ! j l i~qr !. ~A21!

In terms of the angular and radial matrix elements defined
above, the multipole moments of the compensation charge
~17! can be calculated from

QLM
a 5~2Za1Qcore

a !dL0dM01(
i , j

Wi j
aGl imi l jmj

LM nni l inj l j
aL .

~A22!

From a knowledge of these multipole coefficients, the fourth
term of Eq.~A8! can be calculated according to

^f̃ i
auv̂auf̃ j

a&5(
LM

QLM
a ~21!MGl imi l jmj

L 2M v̂ni l inj l j
aL .

~A23!

The fifth ~core tail! term of Eq.~A8! involves contribu-
tions from both the AE and PS matrix elements:

@ ṽcore
a # i j[

4pe2

V (
GÞ0

nD core~G!

G2 eiG–R
a

3(
LM

Gl imi l jmj

LM i LA4pYLM~Ĝ!Jni l inj l j
aL ~G!.

~A24!

This term does not depend upon the self-consistent valence
density and is designed to converge rapidly withG. The
radial Fourier integrals used in this equation are defined by

Jni l inj l j
aL ~G![E

0

r c
a

dr j L~Gr !@fni l i
a ~r !fnj l j

a ~r !

2f̃ni l i
a ~r !f̃nj l j

a ~r !#. ~A25!

The sixth ~Hartree! term of Eq. ~A8! can be calculated
according to

@VH
a # i j5 (

LM ,~k,l !
~21!MGl imi l jmj

L 2M Glkmk l lml

LM

3Wkl
a Vni l inj l j ;nkl knl l l

aL . ~A26!

In this equation, the sum overL andl k andl l is restricted by
u l k2 l l u<L< l k1 l l and u l i2 l j u<L< l i1 l j . The sum over
mk and ml is restricted by M5mj2mi
5mk2ml .

The Coulomb shift term of Eq. ~A8! formally comes
from the variation of the energy with respect to the multipole
moment contributions which can be written1

@v0
a# i j5(

LM

]E

]QLM
a Gl imi l jmj

LM nni l inj l j
aL

2d l i l jdmimj

4pe2nD core~0!nni l inj l i
a2

6V . ~A27!
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The coefficients]E/]QLM
a have several contributions which

can be written

]E

]QLM
a 5

4pe2

V (
GÞ0

@nD ~G!1 n̂̄~G!#*

G2 YLM~Ĝ! e2 iG–Ra ḡL
a~G!

2(
i , j

Wi j
a ~21!MGl imi l jmj

L2M v̂ni l inj l j
aL

2e2A2

p

QLM
a *

~2L11!~2L11!!! sa
2L11

1dL0dM0

4pe2nD core~0!sa
2

4V . ~A28!

The last term of the two equations above come from the
G50 energy term discussed below

In order to evaluate the exchange-correlation contribu-
tions to the matrix elements@last term of Eq.~A8!# it is
convenient to perform the integration using a numerical grid
based on a product of angular and radial points. The angular
points were distributed according to Gauss-Legendre quadra-
ture for the cos(u) variable and uniformly for thew variable,
with 12 quadrature points for each~in order to accurately
represent integrals for basis functions withl<3). The radial
points were chosen to be the same as those used in the radial
integration in the atomic program. Denoting each angular
integration mesh point byr̂a, and its corresponding integra-
tion weight bywa ~where(awa54p), the matrix element
can be evaluated according to

@VXC
a # i j5(

a
waYl imi

* ~ r̂a!Yl jmj
~ r̂a!

3E
0

r c
a

dr$mxc@n
a~ r̂ar !1ncore

a ~r !2ñcore
a ~r !

1ñcore~ r̂ar !#fni l i
a ~r !fnj l j

a ~r !

2mxc@ ñ
a~ r̂ar !1ñcore~ r̂ar !#f̃ni l i

a ~r !f̃nj l j
a ~r !%,

~A29!

where the radial integral overr is performed for each angular
mesh pointr̂a. The efficiency of evaluating~A29! can be
improved by separating the angular and radial contributions
in the atomic density functions~6! and ~7! according to

na~ r̂ar !5(
i , j

Wi j
a Yl imi

* ~ r̂a!Yl jmj
~ r̂a!

fni l i
a ~r !fnj l j

a ~r !

r 2
,

and

ña~ r̂ar !5(
i , j

Wi j
a Yl imi

* ~ r̂a!Yl jmj
~ r̂a!

f̃ni l i
a ~r !f̃nj l j

a ~r !

r 2
.

~A30!

The PAW atomic matrix elements that are needed to
evaluate the Hamiltonian can also be used to evaluate the
total valence energy~8!. The ‘‘one-center’’ contributions are
given by

Ea2Ẽa5(
i , j

Wi j
a Fd l i l jdmimj

~Kni l inj l j
a 1@v ion

a #ni l inj l j

2@ ṽ loc
a #ni l inj l j !2^f̃ i

auv̂auf̃ j
a&1@ ṽcore

a # i j

1
1

2
@VH

a # i j G2Êa2Ẽcore
a 2Ẽcore

a0

1~Exc@n
a1ncore

a 2ñcore
a 1ñcore#2Exc@ncore

a #

2Exc@ ñ
a1ñcore# !. ~A31!

The self-Coulomb repulsion of the compensation charge has
the analytic form:

Êa5
e2

2
A2

p (
LM

uQLM
a u2

~2L11!~2L11!!! sa
2L11 . ~A32!

The core energy contribution can be evaluated according to

2Ẽcore
a 5

4pe2

V (
GÞ0

nD core~G!

G2 eiG–R
a

3E
0

r c
a

dr 4pr 2nion
a ~r ! j 0~Gr !2Ẽself-core

a ,

~A33!

where

Ẽself-core
a [e2E d3r

nion
a ~r !ñcore

a ~r !

ur2r 8u

1
e2

2 E E d3r d3r 8
ñcore
a ~r !ñcore

a ~r 8!

ur2r 8u
.

~A34!

TheG50 energy term takes the value

2Ẽcore
a0 5

4pe2nD core~0!

V

3FQ00
a sa

2

4
2
1

6(i , j d l i l jdmimj
Wi j

a nni l inj l i
a2

2
1

6E0r c
a

dr 4pr 4@ncore
a ~r !2ñcore

a ~r !#G ,
~A35!

wherenni l inj l i
a2 is defined by Eq. ~A13!, for each value of

l i . The exchange-correlation terms (Exc@n
a1ncore

a 2ñcore
a

1ñcore#2Exc@ ñ
a1ñcore#) are evaluated using a scheme simi-

lar to that used in the evaluation of the Hamiltonian contri-
butions~A29!, while Exc@ncore

a # is a constant for each atom.
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