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Comparison of the projector augmented-wave, pseudopotential, and linearized
augmented-plane-wave formalisms for density-functional calculations of solids

N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
(Received 8 July 1996

The projector augmented-way®AW) method was developed by Ribl as a method to accurately and
efficiently calculate the electronic structure of materials within the framework of density-functional theory. It
contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron
calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to
include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same
ideas developed by Vanderbilt in his “soft pseudopotential” formalism and in earlier work bghBla his
“generalized separable potentials,” and has been successfully demonstrated for several interesting materials.
We have developed a version of the PAW formalism for general use in structural and dynamical studies of
materials. In the present paper, we investigate the accuracy of this implementation in comparison with corre-
sponding results obtained using pseudopotential and linearized augmented-plan@-A@W) codes. We
present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for
several representative covalent, ionic, and metallic materials including diamond, silicon, Sig,f@aEa,
and bcc V. With the exception of CaFfor which core-electron polarization effects are important, the struc-
tural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential
formalisms.[S0163-18287)00404-9

[. INTRODUCTION behavior of the valence electron wave functions. In addition,
there is evidence that it is sometimes necessary to improve
The “projector augmented-wave(PAW) method was upon the accuracy of the pseudopotential approach for the
developed by Bloh* as a method to accurately and effi- structural simulations of some materials.
ciently calculate the electronic structure of materials within ~ Within the framework of density-functional theoty?
the framework of density-functional theoty® It takes ad- pseudopotential methods have been enormously successful
vantage of many of the ideas developed in the pseudopoteim performing structural studies of a wide variety of
tial literature?**2 while retaining information about the cor- materialsi®**?> One contributing factor to this success is the
rect nodal behavior of the valence electron wave functionsccuracy of the frozen core approximatibfor many of the
and has the ability to include upper core states in addition tonaterials throughout the Periodic Table. In order to get a
valence states in the self-consistent iterations. It uses manyore quantitative assessment of the accuracy of the frozen
ideas similar to those developed by Vandeftiift his “soft ~ core approximation, it is helpful to consider a systematic
pseudopotential” formalism and by Biol® in his earlier study of atomic total energies calculated with a self-
work on ‘“generalized separable potentials,” and has beemonsistent atomic structure code using the LDA parametrized
successfully  demonstrated for several interestingoy Perdew and Wantf.First, consides p bonding materials.
materialst#~® In Fig. 1 the error in calculating the energy to “promote” an
We have developed a version of the PAW formalism forelectron from thes to p shell within the frozen core approxi-
general use in structural and dynamical studies of materialsnation minus that of the fully self-consistent result is plotted
We have investigated this implementation as a function oWersus the number of sp valence electrons in the 2nd, 3rd,
computational parameters and in comparison with correand 4th rows of the Periodic Table. The error is less than 1
sponding results obtained using pseudopoteritfdi®and  meV for elements in the 2nd row of the Periodic Table and
linearized augmented-plane-wdveAPW) codes. The fo- less than 10 meV for most of the other elements. It decreases
cus of this study is the numerical accuracy of the computawith increasingx, being larger for the alkali and alkaline-
tional technique. Therefore, all calculations described in thigarth metals than for the halides. There is a jump in the error
work were done using the exchange-correlation functional irat x=3 for Ga because of the completion of thé 8hell.
the local density approximatiofi.DA) parametrized by Per- This error can be essentially eliminated by including tkde 3
dew and Wand?* Extension of the current formalism to more states as valence states in the self-consistent calculations. In
complicated exchange-correlation functiodlsr to include  Fig. 2 the error in calculating the energy to “promote” an
relativistic and/or spin effects, should be straightforward. electron from thes to d shell within the frozen core approxi-
There are several motivations for developing the PAWmation minus that of the fully self-consistent result is plotted
formalism. A number of physical propertiésuch as mag- versus the numbex of sd valence electrons in the 4th and
netic properties, electronic matrix elements, for example5th rows of the Periodic Table. Evidently, the frozen core
should be calculated with a knowledge of the correct nodaérror is considerably larger fosd materials than it is for

0163-1829/97/561)/200513)/$10.00 55 2005 © 1997 The American Physical Society
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16 pseudopotential calculations for Fe$letermined the S-S
P~ Ga bond length to be more than 0.1 A larger than the experi-
g Mr ® mental value, while all-electron calculations determined the
‘g 12 | bond length to be substantially closer to the experimental
S value. In the present paper, we find an even larger error in
3 Ge the pseudopotential prediction of the equilibrium lattice con-
E 8 K o stant for Cab compared with than that predicted by all-
s . @ As electron calculations. Clearly, it is sometimes necessary to
H ®Na ® Se go beyond the pseudopotential approach for structural simu-
§ ir < o g lations, as can be provided by the PAW formalism.
o 2 Mg Al This paper is organized as follows. In Sec. I, we review
§ ok LiA Be A Bx cfs NP Odys F‘c, the general features of formalism developed bydBId In
© Sec. lll, we describe our method for constructing the basis
] > s . s . - and projector functions and present examples. In Sec. IV
Number of sp electrons results are presented for calculation of the electronic struc-

ture of a variety of materials including the insulators GaF
FIG. 1. Configuration energy error in meV corresponding toand dlamon_d; the semlcongluctors silicon and SiC; and the
frozen core minus all-electron total energy differencesMetals calcium and vanadium. The summary and conclu-
E(ns’np* —ns” Inp*~9*1), wherex denotes the number of Sions are presented in Sec. V. Detailed formulas for the
sp valence electrons in the neutral atomis 1 for the alkali metal Hamiltonian matrix elements and total valence energy are
atoms and 2 otherwise, amds the principal quantum number 2, 3, presented in the Appendix.
or 4.

Il. GENERAL FORMALISM

sp materials, and is larger for thed3ransition metals than In density functional theoR/for periodic solids, it is nec-

for the 4l transition metals. It is interesting that the error is essary to calculate the self-consistent Bloch wave functions
uniformly positive (t_he promotion_ energy is larger in the ¥ (), wheren andk denote band index and wave vector,
frozen core approximation than in a fully relaxed calcula-respectively. In the PAW formalism, all variational calcula-
tion) even though the promotion energy itself changes Si9fions are performed on smooth wave functioﬁﬁk(r),

for the sd'materials atx=6. For all of these materials, the |\ hich are designed to be represented in plane-wave expan-
configuration energy error can be reduced by several ordeigyns The conversion between the smooth wave functions
of magnitude by including the upper core states in the selfyng the corresponding wave functions having the correct

consistent calculation. , o nodal form is achieved through the use of a set of three types
Some examples of systems which have significant corez¢ ¢,nctions defined for each atom: the “all-electron”

electron contributions to the structural energy have appeare : ; as.y 19 “ " ;

in the literature. For example, Wright and Nel$bmoted E) E)-iSIS functionsh, (r)., the psgudga(PS b?S|slfunc-
that it was necessary to include thel 3tates to correctly t!ons ¢i(r), and t.he projector functiong, (r). Blochl .de-
calculate the structural properties of GaN and other Ga]flned these funguons to have the following properties. The
containing materials. In our previous wotkwe found that AE and PS basis functions are chosen such that

dA(r)=pi(r) for r=rd, N

100 whererZ is the radius of a nonoverlapping sphere about the
%90 g atomic sitea. Because of the cancellation propefty, the
E T @ basis functions¢? and ¢ are never evaluated beyond
€80 vV @ r>rg, although they are continuous for all The projector
il Cr n% ® functions vanish for>r2 and satisfy the complementary-
g‘70 B Fe @ orthogonality property:
g co @ Y

- Ni e~

5 &0 ' cCu (Pilof) =13 - 2
Ss0 T¢ Ru Rh Pd A Within the constraints defined in Egd,2), there is consid-
o Nb Mo ‘ ’ . . . .
€ z & ¢ ¢ erable freedom in the choice of the atomic functions
840 B {#2, ¢, andp?}. The choices used in the present work will

30 ? . . . . . . . . be described in Sec. Il below. In terms of these functions,

3 4 5 6 7 8 9 10 ™N" the full Bloch wave function?’, (r) can be calculated from
Number of sd electrons the smooth wave functiod,,(r) using the relation

FIG. 2. Configuration energy error in meV corresponding to ~ a o ~a v al
frozen core minus all-electron total energy differences ‘I’nk(r)=‘1’nk(r)+2 [$2(r—R%H—&{(r —RH P W),
E[ns’(n—1)d* 2—ns'(n—1)d* 1], wherex denotes the number al 3)
of sd valence electrons in the neutral atom andenotes the prin-
cipal quantum number 4 or 5. whereR? denotes the atomic position within a unit cell.
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The PAW formalism is designed so that the valence-contributions, confined within a sphere of radidsabout the
electron density can be calculated as a sum of three contratom a. It can be shown that integrand of the difference
butions: energy E2—E? converges smoothly to zero at the sphere

a
—F() +nX ) =7(r). boundary at ;.
N =n(r)+n*(r)=ni(r) @ E? represents the energy contribution inside the atomic

In Eq. (4), the first term represents the pseudodensity whiclspherea:
can be represented by a plane-wave expansion throughout

the unit cell. Specifically, the smooth density is given by Ea— nkz,i,j fnk<q,nk|pia><p?|q,nk>< b2 _ﬁvz ¢Ja>
AN =2 ful To(n?, 5 e? n2(r)n(r’)
nk +Eff ) ad3rd3r’w
wheref , denotes the occupancy factor. The last two contri- Pl
butions to Eq.(4) are designed to exactly cancel each other s a a _
in the region outside the atomic spheres and to correct the + Jr<rad r N3N [vion(r) +veord )]
density for the correct nodal behavior in the vicinity of each e
atom. The “one-center” terms can each be represented as a +Eyd N+ 02 R A Moo — Exd N . (10)

sum of atomic contributionsn(r)==,n3(r—R? and
A*(r)=2,n%r—R?). The atomic density terms are given by  Ea sybtracts out the smooth density contributions in-
cluded in Eq.(9) within atomic sphera and includes addi-
n3(r)= kz fnk<{fink|’5?><b‘?|{ffnk>d,ia(r)*d,?(r), (6)  tional Coulombic corrections terms:
nK,l1,J

2
for the contribution having the correct nodal form, and E= n;j fnk<q’nk|5?><5?|‘l’nk>< &7 —EVZ ¢?>
_~ ~ e o~ ™ ~ ~ 2 AT
na(r)z E fnk<\Pnk|p?><p?|\lfnk>¢ia(r)* (f)?(l’), (7) + e— d3r d3r 4 M
nk,i,j 2 ror’=rd |r—r’|
for the corrections tan.
Blochl derived the PAW formalism by writing the valence + f d3r N [03(r) + 0 eord 1]
energy for the system in terms of three contributions corre- r<rg

sponding to the density form:
+f A3 RA(NDR(r)
r<r

E=E+E1—E1. (8) c
The valence energy E@8) represents the energy of the va- +E2+E2 4E20 4 E [T+ oo (11)
lence electrons interacting with themselves, with the atomic core moore” XE cor
nuclei having atomic numbet®, and with the core electrons |y the above equationsE,. denotes the exchange-

of the system which are assumed to be “frozen” in the samegyrelation energy function which depends on the density
functional form as in the atorf?. The three contributions can argument->?* In addition to depending on the valence den-

be written as follows. sity contributions(5, 6, and 7, the energy evaluation in-
E depends upon the evaluation of the smooth densitgludes the frozen core density, a “compensation” charge
functions throughout the unit cell: density, and an arbitrary localized potential as discussed be-
52 low.
E=E fnk<{f,nk _ _Vz{f,nk> The frozen core densny?ore(r) ass_oc_|ated with sita is
nk 2m expected to be mostly contained within the atomic sphere

o2 [R(r)+ AR +A(r)] r2, however, because electrostatic effects are strong, a small
+ _f f d3r d3r’ . extension of the core density beyonfican have an appre-
2 [r=r'| ciable effect on the binding energy. We approximate these
A oo T) effects within the spirit of the frozen core approximation, by
+e2f f d3r d3r'$+f d3r N(r)vu(r) superposing the atomic core densities. For this purpose, it is
[r=r| convenient to define a spherically symmetric smooth core

2 = = / tail function associated with site:
e Neord M Neord T _
+_f j dor gpr eod Meord ) 0 i .
2 Ir—r| . rée " /4m for r<rd 12
ng (r)y= ,
9 cord nd,r) for r=r2

The “one-center” contributions to Eq8) can each be whereT2 and 9 are adjustable constants. This form has
represented as a sum of atomic terBS=3.E* and  peen previously used for LAPW calculatioffsin terms of
E'=3,E? wherea indexes all the atoms of the unit cell. the smooth core tail function, a smooth frozen core density
Each one-center contributioE? and E?, is evaluated with  functionn.,{r) can be formed from a lattice superposition,
all integrals involved with evaluating the valence densitywhich can be easily evaluated in Fourier space:
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_ o the spheres is arbitrary. It is convenient to choose a normal-
% Neord G)E, ized form based on a Gaussian timrés

<l k

ﬁcore( r=

1242
where gi(r)=N rte "o,
where

-1

ﬁcore( G)= 2 e_iG.Raﬁcore(G) )
(19

0

with

- Here oa is a width parameter adjusted so tigg(r)~0 for
Neord G)= J dr 4 2g,dr)jo(Gr), (13 r=r2. In Eq.(11), 5® denotes the Coulomb potential of the
compensatmn charge densiy, and E2 denotes the corre-
whereV is the volume of the unit cellR? denotes a lattice sponding self-energy correction:
site, andjo(Gr) denotes the spherical Bessel function. The

core tail potential which appears in Eq4.0) and (11) is “a 9 3 ,ﬁa(f')
easily evaluated in Fourier space: (r)=e” [ dr =1 and
_ 47re? ﬁcore(G) iG. nA(rYna(r
Veord ) = v GE;tO G2 e’ (14 __J d3r d3r’ ( n (| ) (20)

where theG=0 contribution must be treated separately as
discussed below. The localized portion of the frozen core
density contributes to Eq10) in the form of the ionic Cou-
lomb potential for atormra (with atomic numbeZ?):

Additional Coulombic correction terms appear in Eq.

(11. The termECore represents ion-core interactions minus
the corresponding self-energy corrections:

Ui%n(r)EeZJ’r,<rad3I’/ %’ Egore_f d3r n%“(“_ Ra|)[scorér)_'l;core(|r_Ral)]
C A2 (r
where _ _f J' dg d3 , core(|r) co|re( ) (21)
nd (r)=—22 8(r)+[nd,{r)—n2 4r)]. (19 |n this expression . (14) represents the potential due to

the superposed core densities, while g, term subtracts

Blochl introduced a “compensation” charge densiyin out the potential due to the smooth core density function
order to represent, in a physically correct and mathematlcall§

convenient form, the total charge within each atomic sphere.core associated with the sita. By subiracting out seli-

a other than that represented by the smooth charge densit oulomb interactions, the net ionic contributions of this cal-
cllation are equivalent to that evaluated via an E@sddm-

n? andn?,. The total compensation charge density is given

: G s Una DA "~ mation in other formulation&!
as the sum Qf atomic contributiomgr)=2,n*(r —R") de Because the analysis represents a system with no net
fined according to

charge, the Coulomb energy is well defined. However, spe-
cial care is needed for evaluating tli&= 0 contributions.
AA(r—R)=> Q3,Y.m(r—R)g¥(|r—R?¥). (16) The compensation chardé6) has been defined so that the
LM sum of the smooth charge density plus the core tail density
In Eq. (16), the coefficientsQ?,, represent the multipole PIUS the compensation charge density represent a neutral sys-

moments of the compensation charge: tem: [ dsl’[ﬁ(l’)f’ﬁqore(l’)-l*ﬁ(l’)]:O. Also by construction
(16), the sum of ionic charges plus valence difference charge
Q2u=(—2Z2+Q2,J 8.06mo minus the compensation charge also form a neutral system:
J d3r[nd(r)+n3(r)—n3(r)—n3(r)]=0. However, in col-
o 3 A\ Lraagey | =a lecting all the terms involved with evaluating the Coulomb
A (r=rd) o Yiu(Hrin®(n —n*(n], interaction in reciprocal space, one finds a nonvanishing con-
17 tribution of the form
where QZ,,. is the core charge localized within the atomic —Eore
sphere, 4meToyd0) [ [M(G)+1%(G)~A%(G) - A(G)]
= v lim a2 .
~ G—0
leoreE frgr?dsr [ngore(r)_niore(r)], (18) (22)
and where the integrals in Eg4.7) and (18) are taken over The energy expressions of EdS), (11) include an extra

a sphere of radius? centered at atora. Since the compen- potential term introduced in the original formulation of
sation charge is used to represent the correct Coulombic p@lochl* of the formu (1) =S v (r —R?), wherevf. is an
tential outside the atomic spheres, its functional form insidearbitrary potential localized within thel radius of atoma.
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This localized potential introduces no net contribution to the . PAW BASIS AND PROJECTOR FUNCTIONS
energy and in the present work was set identically to zero.
The self-consistent Schidinger equations were obtained
by Blochl' by applying the variational principle for the ~ The PAW method depends upon finding basis and projec-
smooth wave function®,(r) to minimize the valence en- fof functions. There have been several suggestions by
ergy (8) subject to the appropriate orthonormality con- Blochl™ and his collaboratofsfor constructing the basis and

straints. The resulting equations take the form of a generaProjector functions. The procedure that we have found to

A. Formalism

ized eigenvalue problem: work well is similar to that developed by Vanderbilb his
soft pseudopotential technique and is also similar to “gener-
sy =T alized separable potentials” developed in an earlier work of
H Wi(1) =00 Wiy(r). (23 Baos Doenelp P
The effective Hamiltonian operator can be expressed in the The starting point of the construction is the solution of the
form all-electron self-consistent Schiinger equation for the

atom?®2” Since the atom has spherical symmetry, the inter-
esting part of a AE basis function is its radial function

H=HPW+ > P2 D5 (P51 (24 #7,.(r), although the complete set of basis functions is com-
(D) posed of products of the radial function and the appropriate
The first term has the form of a local pseudopotential Hamil-spherical harmonic functions: o(r)
tonian: E(qsﬁi,i(r)/r)Yhmi(f) 1%1n general, the radial AE basis func-
52 tions{¢ﬁi|i(r)} are chosen as the valence eigenstates of the
HPW=— 2—V2+'Jeﬁ(r), (25  AE Schralinger equation; their corresponding energies are
m denoted by{s,‘;‘ih}. For atoms with upper core states which
where the smooth effective potential is given by are involved in the bonding, it is necessary to include these
states among the basis functions. In some cases, it may also
_ [A(r') +Nged ) +0(r")] be necessary to include some unbound states among the basis
veff(r)Eezf d3r’ — +1oc(1) functions. For simplicity in notation, the index is used to
[r—r’| L ,
denote the principal quantum number for bound states and is
+ N +Neord 1)1, (26)  extended to enumerate any continuum states included in the

basis set. All evaluations with these functions are confined to
where u,. represents the exchange-correlation potefftial. the regionr<r2. For each value, at most two radial basis
The orthonormality matrix in Eq23) is given by functions were needed for all of the systems we have studied
so far.
For each radial AE basis functioy (r), the corre-
sponding radial PS basis function is chosen to have a poly-
nomial form

Oo=1+ >  [PAO3(PEl,
a,(i,j)

where
N—1

Of =(il#)— (il b)) (27) B n=r""1 3 ar (29

The one-center contributions to the effective Hamiltonian hereN i ber b 4 and 10. and wh h
(24) are functionally similar to nonlocal pseudopotentialW ereN Is an even number between 4 an , and where the
Eoefflments a, are determined from the following two

terms. For each atom, they can be expressed in terms of A . "
or PS matrix elements: matching sets of conditions:

D3=HZ-H2, Eﬁili(rk):(ﬁﬁili(rk)a (30)
where, and
a_/ sajgal 4a £2 [ d? |i|i+1 ~
Hij=(#7[H?¢]) _%<d_r§_(T) bn1. (1
d
o :[sﬁ-li_Ugﬁ(rk)](ﬁﬁili(rk): (3D

Ha =($3H3 $3). 28 . - ;
= (AiH ) (28) wherevq(r) is the all-electron self-consistent effective po-

These terms are discussed in more detail in the Appendix. Ifgntial for the spherically symmetric atom, which is given by
the present work, studying systems with fixed atomic posi- 5 o a

tions {R?}, self-consistent solutions to E@23) were ob- o, . €z 2J I N3 +ngedr’)]

tained with a combination of direct diagonalization using a Verl(1) =~ r e ' lr—r’|

combination of the Davidson-Liu algoritifhand conjugate

gradient? techniques. + pxd M3(r) + ngord 1)1 (32
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The N equations corresponding to Eq®0) and (31), (a) The set of the radial AE basis functio{1$ﬁi|i} should
expressed in terms of the polynomial expansi@), are e chosen to completely represent the valence wave func-
solved simultaneously aN/2 consecutive numerical mesh tiong within the atomic spheres. As discussed below, it is
points {r}, whe_re_ ko<k< I<0+N/2_’ andry <rc o deter-  sometimes necessary to augment this set of functions with
mine theN coefficients{a, }. The first set of equation@0)  the upper core functions and some continuum functions for
ensures that the cancellation conditidn is satisfied for the  higher angular momentum components.
first (N—1)/2 derivatives of the PS basis function, while the (b)The atomic radir® should be chosen to be as large as

: : c
second set of equatiori81) ensures that the projector func- ,,sgipje to facilitate the convergence of the smooth functions

t'OTJS _aretvr\]/ell b(;a_h%esdb is functiof2o) fruct in Fourier space, but there must be no overlap of atomic
sing the radia asis Tunctioliss), we can construc spheres for all structures to be studied.

the radial projector functions using the same functions devel- . L~
oped by Vanderbift for his soft nonlocal pseudopotential ~ (¢) The shape of each PS basis functidqs, } and the

which are also very similar to Bihl's “generalized sepa- corresponding projector functie[@ﬁi,i} can be controlled by

: 3 . . . .
rable potentials.” For each atoma and angular momentum adjusting the matching poinm and the numbeN of match-

:‘i’ntehde- matrix elements of the PS basis functions can be delﬁg coefficients{a,} used to satisfy equatior80) and (31).

In general the best numerical properties are obtained by en-
suring that for a given angular momentum compongnthe
first projector function{'ﬁﬁi,i} has no nodes, the second has
one node, etc., since the projector functions take the role of
'J)a (r) (33) an approximate orthogonal function expansion.

7t It is convenient to choose one value of the atomic radius
ré for each atom, while the parameterg and N can be
different for each radial AE functionﬁﬁi|i. Although the

_ R [(Ma(r")+n3dr’)] shapes of the functions are sensitive to the choice of these
a(r)=od(r)+e?| d3’ = +73 (1) i it
Vet )=V r—r'] Uloc parameters, the total energy is not sensitive.

ﬁ2<d2 1(+1)

I
Bﬁn,=f0 dr ¢ﬁ|(f)[—ﬁ a2 T

~ a
+Ugﬁ(r)_8n,|

wherevi4(r) is the atomic PS effective potential given by

+ ch[ﬁa( r +ﬁ20re( Nl (34

where the potential due to the “compensation” charge of the
atom is given by ?(r)=e? Qfo erf(r/ay)/r. In the present
work, we have set the arbitrary localized potentig].(r)
identically equal to zero. Since, by construction,
va(r)=v34(r) forr=r2, the integrand in E¢(33) vanishes
asr—rg. The radial projector functions can be defined:

B. Example functions

Blochl* showed and we have verified that it is generally
possible to perform accurate calculations with a minimal ba-
sis including one set of PAW functions for eanll; upper
core and valence orbital. In addition, it is sometimes impor-
tant to augment this “minimal” basis with some continuum
states. For example, for Si, it was necessary to include a

#2(d?2 1(1+1) continuuml =2 function which we denoted. In Table | are
pa(=> [— Z_(F_ > listed some representative PAW basis parameters and their
n’ miar r corresponding configuration energy errors. From this table, it

_ is apparent that for atomic calculations, this procedure makes
#2,(1) (Ba');,i. (35) it possible to achieve an accuracy close to the accuracy of the
frozen core approximation itself. With the exception of the
For the same reason that the argument of B8) vanishes valence-only basis set of V, all of these functions correspond
asr—r?2, the radial projector functio?,(r), also vanishes 10 @ configuration energy error of less than a few meV. For

for r>r2. The radial projector functions calculated from Eq. th€ valence-only basis set of V, the configuration energy er-

(35) are related to the full projector functions according to ror s less tharith of the error in the frozen core approxima-

Zar\_ r=a N : ; o
Pi (r)—(ﬁnili(r)/r)Ylimi(r)' This construction of the projec Plots of the PAW functions are shown for V in Figs. 3

tor functions is very similar to the “local wave function” 44 4, comparing the set including the valence functions
|Bi) defined by Yanderb,'ﬁ- With this choice, the second (45 4p, 3d} only and the more complete set including the
term of the effective Har_nlltonla(24) is es_sentlally the same pper core and valence functiofi8s, 4s, 3p, 4p, 3d},
as the nonlocal potential operator defined by V_ande?bllt. respectively. These functions were constructed using the pa-
Provided thaf®(r)=0 forr=r¢, the projector functioi35)  rameters listed in Table I. The shapes of these functions are
vanishes for =r and satisfies the quasiorthonormality con- representative of those of the other atoms listed in Table I.
dition (2). It is constructed so that the PS basis functions From the atomic analysis of the accuracy of the configu-
{#%(r)} are exact solutions to the PAW ScHinger Eq. ration energies, as well as the accuracy of the energy eigen-
(23). This formulation of the projector functions is consistentvalues and logarithmic derivatives, we expect that the set
with the guidelines developed by Riol. including the upper core staté€sig. 4) will give more accu-
With the above scheme for constructing the atomic func+ate results than the valence only $Btg. 3). In fact, the
tions, the accuracy and convergence of the calculation is corvalence-only set was found to suffer from “ghost” St
trolled by the following considerations. and therefore yielded no meaningful results.

+05(r) — e,
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TABLE I. List of PAW basis function parameters for atoms in this study. Radial paramétanzﬂrk0 are
given in bohr units. Errors in thep or sd “promotion” energies(as defined in the figure captions of Figs.
1 and 2 are listed in order to indicate the accuracy of the calculatidi&s oy, (in meV unit9 indicates the
magnitude of the difference between the “promotion” energy calculated using the PAW formalism relative
to that of a frozen core calculatioAE ., (in meV unit9 indicates the magnitude of the difference between
the “promotion” energy calculated using the frozen core approximation relative to that of the fully relaxed

result.

Atom (Z) ra {Basis functions iy ) } AEpaw  AEa  Ghost states ?
C (6) 1.2 {2s(1.2),20(0.85)} 0.04 0.46 no

F (9 1.2 {2s(1.2),20(0.8)} 2.04 0.47 no

Si (14) 2.2 {3s(2.2),3(2.0) ,€d(1.4)} 0.95 0.78 no
Ca(20) 3.6 {45(3.6),40(3.6),31(2.0)} 0.88 3.06 yes

Ca (20 2.7 {3s(2.7),8(2.7),3(2.7),4(2.7),3(1.5)}  0.06 0.00 no

V (23 2.3 {4s(2.3),4(2.3),31(1.25)} 17.05  85.99 yes

V (23 2.1 {3s(2.1),4(2.1),3(2.1),4(2.1),3(1.0)}  3.01 0.28 no

The problem of ghost states for separable nonlocavalence-only basis sets. However, for each of these materials
pseudopotentials has been well documented in théhe more complete basis set, which included the upper core
literature®?%2° Since the PAW Hamiltonian has the same states, was not only ghost free but also more accurate accord-
mathematical form, it is also subject to this problem. Table ling to the atomic criteria.
indicates which of the PAW function sets are found to have However, since the ghost problem has been identified in
caused ghost states in solid state calculations involving thahis formulation of the PAW formalism, one is motivated to
atom. For both Ca and V, we investigated a range of PAWind ways of improving the PAW basis function construction
parameters in an unsuccessful attempt to generate ghost-frakgorithm. One possibility might be that a convenient form
for the localized potential functions;,(r) could reduce the
ghost problem. This will be considered in future work.

1.0
5 4s
505 x5 30 3.0
5 c 3s 20} 4s
e |\ L g20f S 1'0
200 B X 6 1.0 1
< Si0} e S 00
o u;— & -0;- 10
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FIG. 4. Vanadium PAW functions for an accurate basis(iset
FIG. 3. Vanadium PAW functions for a minimal basis ¢ea-  cluding upper core statgsncluding 3, 4s, 3p, 4p, and 3 func-
lence only, including 4s, 4p, and 3 functions; with the dashed tions; with the dashed line indicating, (r), the thin solid line
line indicatingqﬁnih(r), the thin solid line indicatingﬁni,i(r), and a indicating dbni,i(r), and the thick solid line indicating a scaled plot
thick solid line indicating a scaled plot ani|i(r). This set of func-  of 5ni,i(r). This set of functions was constructed using the calcula-
tions was constructed using the calculational parameters listed itional parameters listed in Table I, and has no ghost state difficul-
Table I, and has ghost state difficulties. ties.
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TABLE Il. Comparison of cohesive energie&., (eV/atom;

Ca S equilibrium lattice constantsa, (A); and bulk moduli,B (GP3
25T calculated using the PAW, LAPW, and pseudopotential formalisms.
3.0

Ecoh Qo B
35 :
..................... Pseudo Diamond PAW 10.16 3.54 460
-4.0 |
----------- LAPW LAPW 10.13 3.54 470
45 | ——PAW
pseudopotential 10.13 3.54 460
5.0 -
experiment 7.3% 3.56 443
5.5
= . Silicon PAW 6.03 5.38 98
260} Si =
s | e ms LAPW 5.92 5.41 98
u.|8'65 - CaF2 =
' o pseudopotential 5.99 5.39 98
7.0
75 experiment 4.63 5.43 9%
80 SiC PAW 8.39 4.32 220
o5 wp SIC LAPW 8.29 4.33 230
0.0 pseudopotential 8.35 4.33 230
_[0r N .
o5k N4 V experiment 6.3%  4.3@ 224
100k w C CaF, PAW 6.36 5.34 100
L LAPW 6.30 5.33 110
25 30 35 40 45 50 55 .
add) pseudopotential 6.42 5.21 20
experiment 536  5.445 85-9C¢°

FIG. 5. Plot of the negative of the cohesive energy per aiom
eV) versus lattice constaritn A) for all of the materials in this fcc Ca PAW 2.24 5.32 19
study, comparing results obtained using pseudopotential, LAPW]
and PAW codes. Results include (Ycc structurg C and Si(dia- LAPW 2.20 5.33 19
mond structurg SiC (zinc blende structupe Ca(fcc structure, and pseudopotential 214 537 20
CaF, (fluorite stucturg

experiment 1.8% 5.58 15
IV. RESULTS FOR SOME REPRESENTATIVE COVALENT
In order to check the accuracy of the PAW formalism for LAPW 9.27 2.94 200
bulk materials, we have carried out a series of density- pseudopotential 9.46 294 210
functional calculations, comparing results obtained using the
PAW code with that obtained using LAPVRef. 8 and experiment 53 3.03 162

mixed-basis pseudopotentiaf codes. The PAW calcula-
tions were performed using the larger basis sets described Eﬁeference 32.

Table 1. Care was taken to ensure that all the calculationgRe‘cerence 34.

were equivalently converged. All Brillouin zone integrals Reference 33.

were performed using a uniform samplinglopoints with a

Gaussian weighting scheri&Results for the calculated co- calculations’*~*¢Uniform shifts of the cohesive energies are
hesive energies versus lattice constant are plotted in Fig. Blue to small sensitivies of the three methods to their calcu-
showing results for diamond, silicon, SiC, and Gafec Ca, lational parameters such as muffin-tin or atomic sphere radii,
and bcc V. These results were fit to Murnaghan’s equétion plane-wave cutoff's, or partial-wave convergence. However,
to obtain values of the cohesive energy, lattice constant, andith the exception of Caf; the three methods give nearly
bulk modulus summarized in Table Il. In calculating the co-identically shaped plots of cohesive energyE.q,) versus
hesive energies, no corrections were made for atomic mulattice constantd), as shown in Fig. 5, and very close values
tiplet energies, or zero point motion. As expectéthe LDA  for the equilibrium lattice constantsvithin 1%) and bulk
results predict a smaller lattice constant and larger cohesiveoduli (within 5%), asshown in Table II.

energies and bulk moduli than the experimental values. For CaF,, the pseudopotential calculation predicts a lat-
While focus of the present study is on the comparison of thdice constant which is 2%more than 0.1 Asmaller and a
three calculation schemes to each other, it is gratifying tdulk modulus which is 18 20 % smaller than the PAW and
note that the present results are also consistent with previodsAPW results. Since the pseudopotential calculation is a va-
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lence only calculation, while both the PAW and LAPW cal- whereV denotes the volume of the unit cell. The plane-wave
culations include the relaxation of the upper core electronsgxpansion coefficienté\,.(G) are then the variational pa-
we can conclude that core effects are important for describrameters of the problem which are determined by evaluating

ing the structural properties of this system. This conclusiorgq. (23) in a plane-wave representation. THEY contribu-

is consistent with the configuration energy errors discusseflon of the PAW Hamiltoniar(25) can easily then be evalu-
in Sec. . An additional contributing factor for this system is ated in Fourier space using a formalism similar to that de-
the fact that the valence levels of(Especially the & stat¢  veloped for pseudopotentigi$The Fourier transform of the

are energetically close to the upper core levels é8d 3 smooth density (5) can be represented by
state$ of Ca.

One might have expected core relaxation effects to be
important in more of the systems that we have studied. For ﬁ(G)EJ d3r A(r)e G, (A2)
fcc Ca, the structural errors of the valence-ofpgeudopo- v
tentia) calculation are much smaller than that of GaFig-
ure 2 would lead one to expect a large core relaxation effecthe Fourier transform of the compensation chait@ den-
for bee V, but as shown in Fig. 5, this is not the case. WeSity takes the form
would also have expected KF to have appreciable core relax-
ation effects. However, preliminary results indicate that core
relaxation effects are much less important for KF than for
CaF,.

ﬁ_<e>=a§M QfvYim(G)e 'R gEG),  (A3)

where
V. SUMMARY AND CONCLUSIONS

L
Am i La—G? 024

In summary, we have successfully implemented a version ﬁf(G)=(2L+—1)” G-e
of the PAW method for electronic structure calculations. We o

have calculated the cohesive energy as a function of lattic§ e Fourier transform of the core tail density has been de-

constant for six representative crystals—diamond, silicongned in Eq.(13). The Fourier transform of the arbitrary lo-
SiC, CaF,, fcc Ca, and bee V. The results are consistent withcgjized potential function can be represented by

results obtained with the well-established LAPW and

pseudopotential electronic structure methods. For diamond, .

silicon, SiC, fcc Ca, and bcc V the PAW results were essen- D10d(G) =2, e 'OR 52 (G),

tially the same as the LAPW and pseudopotential results. For a

CaF,, there is an indication that the PAW approach is able t

represent the cohesive properties more accurately than can

the pseudopotential approach by including the contributions w

from the upper core states of Ca. Further work is needed to J%C(G)EJ dr 4mr2o8 (r)jo(Gr). (A5)
fine tune the construction algorithm for the PAW basis and 0

projector functions in order to avoid the problem of ghostIn these terms, the smooth energy contributig®) can be

states™*? evaluated using the same techniques as used in the pseudo-
The present implementation is not yet optimized for effi- : 9 q P
potential formalisn?*

ciency, and is similar in computation effort to the pseudopo-
tential approach. The results are encouraging for both the 2

inherent accuracy and efficiency of the PAW algorithm, E=—> fnk(z IA(G)|? |k+G|?
making it a very attractive method first-principles dynamical 2mnk G

calculationg'=®

(A4)

+2we2 |A(G) +A(G)|2+|Aicord G)|?
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS ~ ~ — _
+fvdsr[n(r)+ncore(r)]€xc[n(r)+ncore(r)]i

In using the PAW_method for periodic systems, the
smooth wave functionW,,(r) are conveniently represented (A6)

in terms of a plane-wave expansion: . . .
P P where the last terrfthe exchange-correlation contributias

1 evaluated by trapezoidal rule integration using the real space
=~ i . fast Fourier transform grid.The corresponding Hamiltonian
Vo(r)= \ﬁ A (G)elk+eT Al ~

() V%: w(G) (A1) function HPW (25) can be written
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[A(G)+A(G) +Aeord G)]

2 _ 1 - : ~ ~
G2 ST+ 52 Do G) €T+ ud A(r) +Tcord ). (A7)

—_ h 41re?
PW_ _ g2
H ZmV % (;o

The contributions to the PAW Hamiltonig@3) from the  ful to decompose the difference Hamiltonian matrix elements

atomic basis and projector functions need some additiona:bf} into the following terms:

consideration. In general, it is convenient to make use of _ ~ = _

atomic parameters calculated and stored during the process D =K +(p{|vil o) —(o{[vid ¢5) — (b7[0% &%)

of constructing the basis and projector functions for each ~ a a a

atom. +[veorelij T IVRTij Hvolij T [ Vxclij » (A8)
The scalar constants that need to be stored for each atofhich will be defined below.

a;e Z?, the atomic pumberQﬁore, the frozen core charge; The O [K2];;, ($lvi42), and ($7[02$%) matrix

r¢, the PAW matching radiusr,, the compensation charge gjements are diagonal in theand!; quantum numbers. The

width parameter; and™® and »#, the core tail function pa- gverlap matrix elements(27) depend on the integrals:
rameters. The radial functions that need to be stored on radial

grid for each atom areg, {r), the core density{¢p,, }, the Ofi = 5|i,j5mimjoﬁi|i i,

atomic AE basis functions{;Eﬁih}, the corresponding PS ba-

— where
sis functions; anqpﬁi|i}, the corresponding projector func-
tions. od Efr? drl 2. (12 (r et r ~a N1
The “one-center” radial integrals that are needed in the "' "' Jo [&n, (1) by (1) = &y (1) iy ()]
evaluation of the overlap and Hamiltonian matrix elements, (A9)

a a H
Ojj [Eq. (27] andDj; [Eq. (28)], are conveniently calcu- g yinetic energy matrix element8) depend on the in-
lated and stored in the atomic calculation. Since the atom"f’egrals:

problem is spherically symmetric, all of the atomic matrix

elements are diagonal in the; and m; quantum numbers Kﬂ=5|,|.5m .
and can be evaluated as radial integrals. In order to analyze I
the necessary matrix elements for the full problem, it is helpwhere

2
K2 = _ﬁ_
nil; njlj_( 2m>

Ka
nil; njlji

a

i @ 1+l ~ a2 1(+1
J dr[‘{’ﬁi'i(”(W‘%)%.j(r)—qﬁﬁm(r)(ﬁ—l('—z)

0 r

@ﬁj.jm}. (A10)

The AE ionic potential15) matrix element is given by L, where|l;—Ij|<L=<(l;+1;). For example, thé&th moment
a A a . of the density matrix element:
<¢i|Uion|¢j>:5|i|j5mimj[vion]ni|inj|j, A
rC —~ —~
where 0850, = |00 T 3,065, = B8, 35,0
0

2 (A13)
[0l o1y = | A 65, (0B 83, (A1D

0 is used in calculating the moments of the compensation
The matrix element of the arbitrary localized potential isCharge(17). The radial part of the electrostatic potential cor-

given by responding to the Gaussian fornil9)

(plvied ¢?>: 5Iilj5mimj[’i;ﬁ)c]n-l- nils 4me’

N 1 (r
o vN=51 _rL+lj0dr, r'-t2gR(r)

where

: (A14)

. r? . _ - +rL oodr, rll—Lga(r/)
[Taelnt n_._EJ dr G5, (NTRd1 63, (1. (AL2) fr .
0

[ e |

can be evaluated analytically. In principle, this integral
The remaining Hamiltonian matrix elements are not diag-should be confined within the atomic sphere, but because of
onal inl; andl;. It is useful to define intermediate matrix the localization of the Gaussian function, the integral can be
elements which depend upon a “total” angular momentumextended to infinity. The first few functions are
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. [4me? erf(rlo,) where the Fourier transform of the radial part of the projector
vo(r) = —_—, function in the above equation is given by
Oa rlo,
] N
sr) = Vame? [ erf(r/oy) _ie*(”"a)z ﬁnili(q):fo drr pu, (D, (ar). (A21)
! 305 | (rlon)® [z (tloy) |
In terms of the angular and radial matrix elements defined
R Vame?| erf(rloy) above, the multipole moments of the compensation charge
vy(r) = 563 | (t1o0)® (17) can be calculated from
2 o (lo0?| oy 3 (AL5) Qfw=(~Z%+ Q%0 SL00mo+ 2 WﬁGhmi|jmjnﬁhinj|j-
lo)?] | "
37 (rloq (A22)
Then, the matrix elements involving the compensationFrom a knowledge of these multipole coefficients, the fourth
charge potential depend upon term of Eq.(A8) can be calculated according to
S _ - )
vﬁhinj.jzf dr ¢4, (NOF(N Y (1. (AL) (G707 67) =2 Qlw (= DMGiim VD Riny, -
0
(A23)
Finally, the matrix elements of the Hartree potential, _ _ _ _
[Va]ij , depend on the four-index matrix elements: The fifth (core tai) term of Eq.(A8) involves contribu-
tions from both the AE and PS matrix elements:
val e | “4 | Carr 476 fead ©)
dndondon = 51 a4 r r' C+1 —~ mE Neor ‘a.pa
nilinglindkind - 2 +1 0 0 rs [Usor = N (;O o2 glGR

X[¢ﬁi|i(r)¢ﬁj|j(r)¢ﬁk|k(r')¢§l|l(r')

—BR (N BR (N BR, (1) (1],
(A17)

In summary, the following radial matrix elements are calcu-
lated and stored in the atomic calculation for each atom o
the extended systerdOq o b, {KQi i} {[0fondny, npt b

iy a
{[’i)‘loc]nili n.I}v {[’Jgore—lnili n-I-}’ {nﬁhin-l-}’ {l}ﬁhin-l-}v and alL _ e : a a
{Vﬁhinjlj inkj|kln|||}- " B a Jnilinjlj(G): fo ar JL(Gr)[¢nili(r)¢njlj(r)

In order to evaluate the last five contributions to &),

X 2 GHY i VATYLW(G) I3 1 (G-

(A24)

This term does not depend upon the self-consistent valence
Pensity and is designed to converge rapidly wih The
radial Fourier integrals used in this equation are defined by

it is necessary to introduce intermediate quantities which de- —én(Nén ) (N]. (A25)
pend upon the angular variables of the problem. The
“Gaunt” 3’ coefficients are defined to be The sixth (Hartreg¢ term of Eq.(A8) can be calculated

according to

Gim 1. .E\/47rf dQ Y (F) YE(P) Yim (7).
im; 1y im i [Va]i]:LMZ(kl) (_1)MG|LirrTiMm-G:_k'\r¢1kl|m|

(A18) 'jm
These coefficients are nonzero only whdnr=m;—m; . X WE, VﬁiL,in_,_ eyl - (A26)
It is also useful to define projected occupation coefficients "
according to the definition In this equation, the sum ovérandl, andl, is restricted by
[lk—l|<L=<Il+l, and [l;—l;|<L<I;+I;. The sum over
~ e e m, and m, is  restricted by M=m-m,
WSE% fnk<wnk|p?><p?|q’nk>- (Alg) =me—m;. J I

The Coulomb shift term of Eq. (A8) formally comes
In order to evaluate these coefficients it is necessary to cafrom the variation of the energy with respect to the multipole
culate the projector overlap matrix eleme(ié|¥,,.). These moment contributions which can be written
can then be evaluated as a sum over plane-wave coefficients:
JE
al _ LM aL
[volij —% m Gim t.mMini.

) [ |

25 a2
4me Neord 0)NN 1 1.

~ 1 . a
(B W) = \[1—)2 @iy}, (K+G)elte R
G [}
[N

X Pt (Ik+G|)) An(G), (A20) ~ 011, 0mm, 3% . (A27)
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The coefficients’E/dQ},, have several contributions which

can be written

JE 4re?
ﬂQfM V &7o

[n G)+n(G)]*

Yiu(G) e 1R g¥(G)

a 1 M aL
N Ij ( ) ||m| IJmJ nIIInJIJ

('D
N
%’

(2|_+1)(2|_+1)H(72L*l

41re ﬁcore(O) O'a

+ L0dmo 20 (A28)

The last term of the two equations above come from th

G=0 energy term discussed below
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The PAW atomic matrix elements that are needed to
evaluate the Hamiltonian can also be used to evaluate the
total valence energ{8). The “one-center” contributions are
given by

Ea_Ea:Z Wﬁ|:6|||15m|mJ(Kgllln| [UIOn]nI||nl|J

[Uloc]nl )= <¢alva| ¢?>+[Ucor ij

i

Ea

an
core  “core

+3 [V Tij|—

+ (EXC[na+ ngore

EXC[’F]‘a + ﬁCO reJ ) .

core ncore] EXC[ nCOI‘F‘J

(A31)

eI'he self-Coulomb repulsion of the compensation charge has

In order to evaluate the exchange-correlation contribu!€ analytic form:

tions to the matrix elementdast term of Eq.(A8)] it is

convenient to perform the integration using a numerical grid -
based on a product of angular and radial points. The angular E=
points were distributed according to Gauss-Legendre quadra-

ture for the cosg) variable and uniformly for the variable,

with 12 quadrature points for eadin order to accurately
represent integrals for basis functions with3). The radial

points were chosen to be the same as those used in the radial ~,
integration in the atomic program. Denoting each angular ~Ecore™ V
integration mesh point by, and its corresponding integra-
tion weight byw, (whereX w,=41), the matrix element

can be evaluated according to

[Vicli=2 WaYiim (Fa) Yim(F)

e
X f d r{/u'xc[na(i:ar) + n?ore(r) -n
0

cord ")

Faord Far) 103, (1) 63,,(1)

= 1 (T o)+ Ticord Fal) 165, (N 851 (N},
(A29)

where the radial integral overis performed for each angular
«- The efficiency of evaluatingA29) can be

mesh pointr

1QRml?
m (2L+1)(2L+ D)o

_e
?w

2071 (A32)

The core energy contribution can be evaluated according to

477822 Acord G) QiGR?
& G*

rd . =
X fo°dr 47Tr2nﬁ)n(r)JO(Gr) - Egelf—core’

improved by separating the angular and radial contributions

in the atomic density function&®) and(7) according to

. ) B (DR (1)
N(Far) =25 WEYim(Fo) Y1 (Fo) =2

and

Eﬁili(r)gﬁjlj(r)

M a) =2 Wi Yiim (o) Yim,(Fa) 2

(A30)

(A33)
where
~ NGn(NNeord 1)
Egelfcor ezf dsr |r—r’|
_ff d3r g3y —core_Tcore” 7 core(r)ncore(r
o=
(A34)
The G=0 energy term takes the value
o Ameigd0)
_Ecore_T
Qoo‘f 1
: 62 5II §mmW|] ”|I|”JI|
i
1 re 41 2 ~a
~5 . dr 4ar*[ng,dr)—nNgod ]|,
(A35)

where nnI ;s is defined by Eq. (A13), for each value of

li. The exchange—correlation termE ([ n®+ng, o~ NSore
+Ngorel — Exd N®+Ngore]) are evaluated using a scheme simi-
lar to that used in the evaluation of the Hamiltonian contri-
butions(A29), while E, [, is a constant for each atom.
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