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Orthogonal polynomial projectors for the projector augmented wave method
of electronic structure calculations

N. A. W. Holzwarth, G. E. Matthews, A. R. Tackett, and R. B. Dunning
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109

~Received 8 September 1997; revised manuscript received 14 January 1998!

The projector augmented wave~PAW! method for electronic structure calculations developed by Blo¨chl
@Phys. Rev. B50, 17 953~1994!# has been very successfully used for density functional studies. It has the
numerical advantages of pseudopotential techniques while retaining the physics of all-electron formalisms. We
describe a method for generating the set of atom-centered projector and basis functions that are needed for the
PAW method. This scheme chooses the shapes of the projector functions from a set of orthogonal polynomials
multiplied by a localizing weight factor. Numerical benefits of the scheme result from having direct control of
the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate
‘‘ghost state’’ problems, which can plague calculations of this kind. Electronic density of states results are
presented for the mineral powellite (CaMoO4). @S0163-1829~98!03416-X#

I. INTRODUCTION

The projector augmented wave~PAW! method of elec-
tronic structure calculations, developed by Blo¨chl1 and also
used by our group,2 is a very powerful method for electronic
structure calculations within the framework of density func-
tional theory.3 In order to use this method, it is necessary to
find three types of atom-centered functions—‘‘projectors,’’
all-electron basis functions, and smooth pseudo basis func-
tions. Schemes for constructing these functions have been
discussed in the literature.1,2,4Our earlier scheme2 was found
to work well for some materials, but failed for others. We
describe a mathematically well-controlled method for gener-
ating the projector and basis functions that promises to work
very well throughout the Periodic Table.

II. FORMALISM

Following the notation of Refs. 1 and 2, the functions that
are needed for each atomic typea are denoted

$f i
a(r ), p̃ i

a(r ),f̃ i
a(r )%, representing the all-electron~AE! ba-

sis functions, the projector functions, and the pseudo~PS!
basis functions, respectively. The first step in the process is
the solution of the all-electron self-consistent Schro¨dinger
equation for the atom and the selection of the appropriate set
of upper core and valence AE basis functions$f i

a(r )% hav-

ing one-electron energies$« i
a%. The task is then to choose the

corresponding projector functions$ p̃ i
a(r )% and PS basis

functions $f̃ i
a(r )%, which must satisfy a number of condi-

tions. First, in order to accurately transform between the cal-
culated PS wave functions and their corresponding AE func-
tions, the projectors should approximately satisfy a
generalized completeness condition within each atomic
sphere of radiusr c

a :

(
i

uf̃ i
a~r !&^ p̃ i

a~r 8!u'd~r2r 8! for r ,r 8<r c
a . ~1!

Each projector function must vanish and each PS basis func-
tion must become equal to its corresponding AE basis func-
tion outside the atomic sphere:

p̃ i
a~r !50 and f̃ i

a~r !5f i
a~r ! for r>r c

a . ~2!

The projector and PS basis functions must satisfy a general-
ized orthonormality relation:1

E d3r f̃ i
a~r ! p̃ j

a~r !5d i j . ~3!

In addition, the PS basis functions$f̃ i
a(r )% satisfy an atomic

PAW Hamiltonian equation of the form1,2
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~« i
a2H̃a!uf̃ i

a&5(
j

u p̃ j
a&^f̃ j

au~« i
a2H̃a!uf̃ i

a&, ~4!

where the pseudo-Hamiltonian functionH̃a has a kinetic en-
ergy operator and an effective potential contribution:

H̃a~r ![2
\2

2m
¹21 ṽ eff

a ~r !. ~5!

The effective potentialṽ eff
a (r) must be determined self-

consistently as discussed below.
Since the required functions are constructed from equa-

tions for a spherical atom, each of them can be written as a
radial function times a spherical harmonic function, such as

f i
a~r ![fni l imi

a ~r ![
fni l i

a ~r !

r
Yl imi

~ r̂ !. ~6!

Since we can construct the projector and basis functions for a
single atom at a time, it will be convenient to suppress the
index a from some of the expressions below. We will also
suppress the running orbital indexi throughout the rest of the
manuscript and focus our attention on the radial functions

$fnl
a (r )%, $f̃nl

a (r )%, and $ p̃nl
a (r )%. In general, the indexn

denotes a principal quantum number corresponding to upper
core and valence states, and can also be used to enumerate
continuum functions needed to augment the basis.1,2

In the present work, we approximate the completeness
property~1! by setting the projectors to be equal to a set of
weighted orthogonal functions. One convenient set of such
functions can be derived from the eigenstates of the Schro¨-
dinger equation for the three-dimensional harmonic oscilla-
tor:

f Nl~r ![NNle
2r 2/s2

r l 11FS 2N,l 1
3

2
,

r 2

s2D . ~7!

Here, the parameters is chosen so thatf Nl(r .r c
a)'0 within

a specified tolerance,NNl is a normalization constant, and
F(2N,l 13/2,r 2/s2) denotes a confluent hypergeometric
function,5 which is a finite polynomial of orderN ~N50,1,
etc.! in the variable of (r 2/s2). Figure 1 shows the shape of
some of the functionsf Nl(r ).

Our ‘‘orthogonal polynomial projector’’ formalism thus
starts by assuming that each radial projector function is pro-
portional to one of the functionsf Nl(r ):

p̃nl
a ~r !5Anl f ~n2n0!l~r !, ~8!

where the amplitudeAnl will be evaluated below and where
n0 corresponds to the first of the chosen AE radial basis
functionsfn0l

a (r ) for a given l . The following recipe then

ensures that the atom-centered radial functions$fnl
a (r )%,

$f̃nl
a (r )%, and$ p̃nl

a (r )% satisfy the relations 2, 3, and 4.
For each AE radial basis functionfnl

a (r ), we define the

corresponding PS radial basis functionf̃nl
a (r ) according to

f̃nl
a ~r !5(

n8
Bnl

n8xnl
n8~r !. ~9!

The indicesn andn8 enumerate all the (Ml) basis functions
needed for the given orbital quantum numberl . Typically,

Ml51 or 2. For eachn and n8, the functionsxnl
n8(r ) are

defined to be solutions of inhomogeneous differential equa-
tions of the form

S «nl
a 2F2

\2

2m

d2

dr2 1 ṽ eff
a ~r !G Dxnl

n8~r !5Cnl
n8 f ~n82n0!l~r !,

~10!

with the boundary conditions that all of thexnl
n8(r ) functions

are continuous atr 50. At the atomic sphere radiusr 5r c
a ,

they satisfy

xnl
n8~r c

a!5fnl
a ~r c

a! and
dxnl

n8~r c
a!

dr
5

dfnl
a ~r c

a!

dr
. ~11!

The differential equation~10! and boundary conditions~11!

uniquelydetermine the functionsxnl
n8(r ) and the amplitudes

Cnl
n8 . A Numerov algorithm6 for solving these equations is

detailed in the Appendix.

Once the solutionsxnl
n8(r ) are determined, theMl expan-

sion coefficientsBnl
n8 can be calculated from the following

linear relations:

(
n8
Bnl

n851,

(
n8
Bnl

n8F E
0

`

drxnl
n8~r ! f ~n92n0!l~r !G50 for n9Þn.

~12!

Finally, amplitude factorAnl can be calculated in terms of

the expansion coefficientsBnl
n8 :

FIG. 1. Plots of the projector basis functions defined in Eq.~7!
for s51 andN50 ~solid line!, 1 ~dashed line!, and 2~dotted line!.
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Anl5
1

(n8Bnl
n8@*0

`drxnl
n8~r ! f ~n2n0!l~r !#

. ~13!

The projector functions~8! and PS basis functions~9!
found in this way satisfy the PAW Hamiltonian equation~4!
and also satisfy conditions 2 and 3. The above procedure,
solving Eqs.~10!, ~11!, ~12!, and ~13!, determines the pro-
jector and basis function for a fixed value of the effective
potential ṽ eff

a (r). In order to derive the optimal functional
forms, these equations should be solved self-consistently,
since ṽ eff

a (r) depends upon the basis functions through the
corresponding valence PS and AE density functions:

ña~r !5(
nl

wnl

uf̃nl
a ~r !u2

4pr 2 and na~r !5(
nl

wnl

ufnl
a ~r !u2

4pr 2 ,

~14!

wherewnl@<2(2l 11)# denotes the orbital occupation. The
smooth effective potential for the atom is given by1,2

ṽ eff
a ~r !5e2Q00

a erf~r /s!

r
1 ṽ loc

a ~r !1e2E d3r 8
ña~r 8!

ur 82r u

1mxc@ ña~r !#. ~15!

HereQ00
a is the compensation charge in terms of the atomic

numberZa, the core electron chargeQcore
a , and a valence

density correction termQ00
a 52Za1Qcore

a 1* r<r
c
ad3r @na(r )

2 ña(r )#. The self-consistent scheme to determine the PS
basis functions$f̃nl

a (r )% can be thought of as a constrained

minimization of the PS energy functionalẼ defined by
Blöchl.1 For each atom, the shape of the projector and basis
functions depends on the choice of the matching radiusr c

a ,
of the Gaussian length parameters, and of the form of

ṽ loc
a (r ). Typically, we chooses such thate2(r c

a/s)2
<1026.

The localized potential term that appears in Eq.~16! van-
ishes forr .r c

a . In the current scheme, the form ofṽ loc
a (r ) is

arbitrary and can be used to optimize the PAW calculation.
A convenient form is given by

ṽ loc
a ~r !5V0e2r 2/s2

, ~16!

whereV0 is an adjustable parameter. Preliminary indications
are that it is possible to get good results for many materials
~for example, C, O, F, Ca, and Si! using V0[0. However,
since the PAW formulation uses a separable potential it
sometimes suffers from the well-documented phenomenon
of ‘‘ghost’’ states.7 We examined two systems~Fe and Mo!
that exhibited this ghost state behavior and, for both of them,
we were able to eliminate the problem by introducing a re-
pulsive local potentialṽ loc

a with a large enough amplitude
(V0.0). Gonze and co-workers7 studied the mathematical
origin of these unphysical states and found that they are
more likely to occur when there exist eigenstates of the ‘‘lo-
cal’’ Hamiltonian ~H̃PW in the notation of Blo¨chl1! below the
physical eigenstates of the system. In the PAW approach, the
potential due to the ‘‘compensation’’ charge densityn̂(r ) is
usually attractive and thus can shift the eigenvalue spectrum
of H̃PW toward negative values. Therefore, introducing a re-
pulsive localized potential@Eq. ~16! with V0.0# can shift

the eigenvalue spectrum ofH̃PW to higher energy values. Of
course, the contributions of bothn̂ and of ṽ loc cancel out in
the final result of a well-converged and ghostless calculation.

III. RESULTS FOR EXAMPLE SYSTEMS

We have tested this scheme for a few solid state systems–
CaF2, Mo, and the mineral CaMoO4. For CaF2, results were
obtained by generating the projector and basis functions cor-
responding to neutral F atoms withr c

F51.8 bohr and either
neutral Ca atoms or doubly charged Ca11 ions with r c

Ca

52.5 bohr and 0 values forV0
F andV0

Ca. Using a plane-wave
cutoff of uk1Gu<10 bohr21, we obtained results for the co-
hesive energies differing by 0.01 eV/atom, the equilibrium
lattice constants differing by 0.002 Å, and the bulk moduli
differing by 0.2 GPa compared with each other and with the
results of our previous work.2 For the body-centered cubic
metal Mo, results were obtained usingr c

Mo51.6 bohr with
V05100 or 500 Ry. Using a plane-wave cutoff ofuk1Gu
<13 bohr21, we obtained results for the cohesive energies
differing by 0.04 eV, the equilibrium lattice constants differ-
ing by 0.002 eV, and the bulk moduli differing by 0.8 GPa
for the two different choices ofV0 .9

Calcium molybdate~also known by its mineral name
‘‘powellite’’ ! has been studied since the early 1900s for its
very interesting luminescence and structural properties. As
part of a study of the electronic structure of this and related
materials,10 we have calculated the density of states for the
upper core, valence band, and conduction bands. The
CaMoO4 crystal has a tetragonal structure with two formula
units ~12 atoms! per primitive unit cell. The crystal param-
eters for the calculation were taken from the experimental
neutron analysis.11 The projector and basis function param-
eters were similar to those used for our calculations of CaF2
and body-centered cubic Mo, choosing the local potential
parameters for Ca and O to be zero andV0

Mo5200 Ry. ~Cal-

FIG. 2. Plot of the density of states for CaMoO4, N(E) ~states/
eV/unit cell! calculated using the PAW method~full line! and the
LAPW method~dashed line!, with the zero of energy taken at the
top of the valence band. For both calculations,N(E) was approxi-
mated by a weighted sum of Gaussian functions, of width 0.1 eV,
centered at each of the energy bands calculated at the 3 samplingk
points. The inset shows the bands near the band gap on an expanded
scale. The labels indicate the dominant atomic character of each of
the bands.

57 11 829BRIEF REPORTS



culations performed withV0
Mo5100 Ry developed ghost

states after a few iterations.! The results were obtained using
a uniform sampling of the Brillouin zone with three non-
equivalentk points with a Gaussian weighting scheme8 and
the plane-wave cutoff ofuk1Gu<10 bohr21. For compari-
son, we also performed a calculation using the linear combi-
nation of atomic orbital~LAPW! method,12 using the same
k-point sampling; muffin-tin radii of 2.0, 1.65, and 1.65 bohr
for Ca, Mo, and O, respectively; and using the plane-wave
cutoff of uk1Gu<6 bohr21.

For both calculations,N(E) was approximated by a
weighted sum of Gaussian functions of width 0.1 eV, cen-
tered at each of the energy bands, calculated at the three
samplingk points. The results are shown in Fig. 2, with the
zero of energy taken at the top of the valence band. What is
remarkable about this figure, is thatthe two results are vir-
tually indistinguishableon both the 66 eV range showing the
upper core states and on the 12-eV range showing the bands
near the band gap. The fact the two independent calculations
can achieve such detailed agreement is a testimony to the
accuracy of both methods. Further analysis with a better
k-point sampling and the inclusion of relativistic effects will
be considered elsewhere.10
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APPENDIX: NUMEROV ALGORITHM FOR SOLVING
RADIAL DIFFERENTIAL EQUATIONS

Equation~10! which we must evaluate numerically can be
written as

d2x~r !

dr2 2G~r !x~r !5CF~r !, ~A1!

where we have suppressed all subscripts and superscripts and
defined F(r )[ (2m/\2) f (r ) and G(r )[ l ( l 11)/r 2

1 (2m/\2) @ ṽ eff(r)2«#. The Numerov method6 is most eas-
ily applied to a uniform discretization of the functions. Let-
ting D denote the radial step size, we can writexk[x(r
5kD), with r c[nD. It is convenient to replace the continu-
ity of the function and its first derivative boundary condition
~11! by requiring thatx(kD)5f(kD) for two consecutive
points: xn5fn and xn115fn11 . The discretization of Eq.
~A1! then becomes a set ofn linear equations forn un-
knowns:$xk , for k51,2, . . . ,n21% andC. These equations
can be written in the following matrix form:

S b1 c1 0 ... 0 0 2d1

a2 b2 c2 ... 0 0 2d2

0 a3 b3 ... 0 0 2d3

A A A A A A A

0 0 0 ... bn22 cn22 2dn22

0 0 0 ... an21 bn21 2dn21

0 0 0 ... 0 an 2dn

D S x1

x2

x3

A

xn22

xn21

C

D 5S 0

0

0

A

0

2cn21fn

2bnfn2cnfn11

D . ~A2!

In these equations, the coefficients are defined according toak[12 (D2/12)Gk21 , bk[222(10D2/12)Gk , ck[1
2 (D2/12)Gk11 , and dk[ (D2/12) (Fk21110Fk1Fk11). For l 51, some of the coefficients must be corrected for the
behavior of the equation atr 50: b1→b121/X and d1→d12U/X, where X[6$11(2m/\2)@ ṽ eff(0)2«#D2/10% and U
[ (2m/\2)(D4/10)limr→0@ f (r )/r 2#.
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