2,031 research outputs found

    Electronic properties of the pseudogap system (TaSe4)2I

    Full text link
    The room temperature ``metallic'' properties of the quasi-one-dimensional charge density wave system (TaSe4)2I differ markedly from those expected of either a Fermi or a Luttinger Liquid. We discuss evidence for the simplest possible explanation of the observed behavior of (TaSe4)2I in its conducting phase - namely the existence of large quasi-static fluctuations of structural order, which however remain of finite extent above the charge density wave transition temperature. These fluctuations produce a pseudogap in the density of states. We compute the temperature dependence of the optical and DC conductivities of (TaSe4)2I in its conducting phase, the nature of its core hole spectra, and the NMR relaxation rate. Predictions for these quantities are made on the basis of a Lee, Rice and Anderson model. This model represents the simplest theory of a pseudogap, and gives satisfactory agreement with experiment in the cases where comparisons can be made. In contrast, the predictions of a strongly correlated (Luttinger Liquid) model appear to to contradict the data. The chief remaining discrepancy is that the gap appearing in transport quantities is less than that observed in photoemission. We discuss some possibilities for resolving this issue.Comment: 41 pages latex, 11 ps figures, uses IOP macro

    Direct k-space mapping of the electronic structure in an oxide-oxide interface

    Full text link
    The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O-vacancies in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO3 is compensated by surface O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio

    Dietary Lipid Saturation Influences Environmental Temperature Preference But Not Resting Metabolic Rate In The Djungarian Hamster (Phodopus Sungorus)

    Get PDF
    Heterothermic rodents increase self-selection of diets rich in polyunsaturated fatty acids (PUFAs) when exposed to cold, short days, or short-day melatonin profiles, and Djungarian hamsters (Phodopus sungorus) do so in long days in response to cold exposure alone. To determine whether Djungarian hamsters are also capable of selecting a thermal environment in response to dietary lipid composition, continuously normothermic hamsters were fed either a PUF-rich diet or a diet rich in saturated fatty acids (SFAs) for 6-10 wk and given a choice of thermal environments. As predicted, SF-fed hamsters were more likely than PUFA-fed hamsters to occupy the single heated corner of their cage (P = 0.0005) and were most likely to show this diet-related difference in behavior when T a fell within the thermal neutral zone. Respirometry revealed no effect of diet on whole-animal or mass-specific resting metabolic rate or on lower critical temperature. The results are more consistent with the homeoviscous adaptation hypothesis, which predicts that organisms should make physiological and/or behavioral adjustments that preserve membrane fluidity within a relatively small range, than with the membrane pacemaker hypothesis, which predicts that high PUFA content in membrane phospholipids should increase basal metabolic rate

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    An anatomical study of the dorsal and ventral nasal conchal bullae and middle nasal conchae in normal Shetland ponies: Computed tomographic anatomical and morphometric findings

    Get PDF
    Abstract Equine paranasal sinuses are susceptible to inflammation. Insufficient drainage through the nasal passages and meatus may lead to the accumulation of inspissated purulent discharge. Particularly in ponies, these anatomical structures are suspected to be relatively small. To date, there are no reports considering the morphology of nasal conchal bullae in small horse breeds such as Shetland ponies. The aim of the present study was to evaluate the size of the conchal bullae and the medial nasal conchae of Shetland ponies and their relation to the skull dimension using computed tomography. Reconstructed images of healthy adult heads of Shetland ponies were used. Linear skull measurements as well as two cranial indices of the head dimensions were taken. Length, width and height of the dorsal and ventral conchal bullae and the medial nasal conchae were measured in relation to the skull and compared with the data of skulls of large breed horses. The anatomical proportions of pony heads were characterized by a smaller cranial index and a greater nasal index than those of large breed horses. Shetland ponies showed a longer cranial length compared with the nasal length. Heads are consistently smaller, and the relationship of the bullae to the head length was also smaller than those measured in large breed horses. A negative correlation between the head and bullae size was found. In conclusion, this study suggests that Shetland ponies have distinguishing proportions of the head. These findings are relevant for clinical examination and surgical treatment of equine sinus disease in those breeds
    corecore