10 research outputs found

    Viscoelastic model for the dynamic structure of binary systems

    Full text link
    This paper presents the viscoelastic model for the Ashcroft-Langreth dynamic structure factors of liquid binary mixtures. We also provide expressions for the Bhatia-Thornton dynamic structure factors and, within these expressions, show how the model reproduces both the dynamic and the self-dynamic structure factors corresponding to a one-component system in the appropriate limits (pseudobinary system or zero concentration of one component). In particular we analyze the behavior of the concentration-concentration dynamic structure factor and longitudinal current, and their corresponding counterparts in the one-component limit, namely, the self dynamic structure factor and self longitudinal current. The results for several lithium alloys with different ordering tendencies are compared with computer simulations data, leading to a good qualitative agreement, and showing the natural appearance in the model of the fast sound phenomenon.Comment: 20 pages, 19 figures, submitted to PR

    Physical mechanisms and parameters for models of microstructure evolution under irradiation in Fe alloys – Part I: Pure Fe

    Get PDF
    This paper is the first of three that overview the main mechanisms that drive the microstructure evolution in Fe alloys under irradiation. It focuses on pure α-Fe and compiles the parameters that describe quantitatively the mobility and stability of point-defects and especially their clusters, including possible reactions and criteria to decide when they should react. These parameters are the result of several years of calculations and application in microstructure evolution models. They are mainly collected from the literature and the parameter choice tries to reconcile different sets of values that, while being in general qualitatively similar, are often quantitatively not coincident. A few calculation results are presented here for the first time to support specific approximations concerning defect properties or features. Since calculations cannot cover all possible defect configurations, the definition of these parameters often requires educated guesses to fill knowledge gaps. These guesses are here listed and discussed whenever relevant. This is therefore a “hands-on” paper that: (i) collects in a single report most microstructure evolution parameters that are found in the literature for irradiated α-Fe, including a discussion of the most important mechanisms at play based on current knowledge; (ii) selects a ready-to-use set that can be employed in microstructure evolution models, such as those based on object kinetic Monte Carlo (OKMC) methods. This work also identifies parameters that are needed, but not known, hopefully prompting corresponding calculations in the future.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project). This research also contributes to the Joint Programme on Nuclear Materials of the European Energy Research Alliance (EERA-JPNM)

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)

    Collective dynamic properties in simple crystals: Influence of the structural disorder

    Get PDF
    Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed

    Molecular dynamics study of the longitudinal modes in disparate-mass binaryliquid mixtures.

    Get PDF
    A series of molecular dynamics simulations of simple liquid binary mixtures of soft spheres with disparate-mass particles were carried out to investigate the origin of the marked differences between the dynamic structure factors of some liquid binary mixtures such as the Li0.7Mg0.3 and Li0.8Pb0.2 alloys. It is shown that the facility for observing peaks associated with fast-propagating modes in the partial Li-Li dynamic structure factor of Li0.8Pb0.2 should be mainly attributed to the structure of this alloy, which is characterized by an incipient ABAB ordering as found in molten salts. The longitudinal dispersion relations at intermediate wave vectors obtained from the longitudinal current spectra are very similar for the two alloys and reflect the existence of both fast-and slow-propagating modes of kinetic character associated with light and heavy particles, respectively. The influence of the hardness of the repulsive potential cores as well as the composition of the mixture on the longitudinal collective modes is also discussed

    Plastics and environment Use, discard and use again

    No full text
    17.50; Translated from Italian (Plast 1988 (2) p. 31-36)Available from British Library Document Supply Centre- DSC:9022.0601(BISI-EM-Trans--147)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Atomistic study of multimechanism diffusion by self-interstitial defects in Âż-Fe

    No full text
    We present the results of an extensive molecular dynamics study of selfinterstitial atom (SIA) clusters containing up to 37 defects over a wide range of temperatures in iron. A long simulation time and high statistics of defect jumps allowed a detailed treatment of the data to be performed. Diffusion exhibits a change in mechanism from three-dimensional to one-dimensional for clusters of 4–7 SIAs. Stable sessile configurations present in the diffusion process are described and their influence on the diffusion parameters is discussed. Diffusion coefficients, correlation factors estimated, and mechanisms observed, are compared with previously published results, and the influence of the interatomic potential is considered

    Longitudinal collective modes in simple liquid binary alloys: A computer simulation study.

    Get PDF
    The dynamic collective properties of the liquid Li0.7-Mg0.3 alloy are studied by molecular-dynamics simulation. The dynamic structure factors and longitudinal current correlations at wave vectors between the hydrodynamic and kinetic regime (0.2,k, 4A 21 ) are analyzed. In order to discuss the influence of the mass difference between particles on the longitudinal modes, the same alloy, except that the mass of the heavy atoms was increased by a factor of 10, was simulated. The resulting properties are compared with those of the ordinary Li0.7-Mg0.3 alloy. It is shown that at wave vectors prior to the hydrodynamic region both fast and slow longitudinal modes of kinetic character propagate through light and heavy particles, respectively. In the hydrodynamic limit fast and slow modes merge into a single acoustic mode. It is corroborated that fast propagating modes in disparate mass liquid mixtures have a kinetic character. The number-number and concentration-concentration time correlation functions were also determined. The former shows a behavior analogous to that of the corresponding function in one-component liquids. The second reflects the existence of propagating concentration modes

    Velocity cross-correlations and atomic momentum transfer in simple liquids with different potential cores

    Get PDF
    Time correlation functions between the velocity of a tagged particle and velocities of particles within specified ranges of initial separations have been obtained by molecular dynamics simulation. These correlation functions have allowed us to analyze the momentum transfer between particles in different coordination shells. Two simple liquids at very different densities and two purely repulsive potentials with very different softnesses have been considered. The longitudinal correlations, which are the velocity cross-correlations along the initial direction defined by the centers of two given particles, have been calculated separately. It has been proven that these correlations should be attributed to particles both in front of and behind the central one. As with propagating longitudinal modes, they are strongly dependent on the softness of the potential core. Some characteristic features of the velocity correlation functions after the initial rise should be related to nonlongitudinal correlations. It has been shown that velocity cross-correlations between distinct particles cannot only be attributed to the direct interactions among particles, but also to the motions induced by the movement of a tagged particle on their neighbors
    corecore