107 research outputs found
A comparison of calculated and measured background noise rates in hard X-ray telescopes at balloon altitude
An actively shielded hard X-ray astronomical telescope has been flown on stratospheric balloons. An attempt is made to compare the measured spectral distribution of the background noise counting rates over the energy loss range 20-300 keV with the contributions estimated from a series of Monte Carlo and other computations. The relative contributions of individual particle interactions are assessed
The 4U 0115+63: Another energetic gamma ray binary pulsar
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power
Schur elements for the Ariki-Koike algebra and applications
We study the Schur elements associated to the simple modules of the
Ariki-Koike algebra. We first give a cancellation-free formula for them so that
their factors can be easily read and programmed. We then study direct
applications of this result. We also complete the determination of the
canonical basic sets for cyclotomic Hecke algebras of type in
characteristic 0.Comment: The paper contains the results of arXiv:1101.146
Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras
We construct an explicit isomorphism between blocks of cyclotomic Hecke
algebras and (sign-modified) Khovanov-Lauda algebras in type A. These
isomorphisms connect the categorification conjecture of Khovanov and Lauda to
Ariki's categorification theorem. The Khovanov-Lauda algebras are naturally
graded, which allows us to exhibit a non-trivial Z-grading on blocks of
cyclotomic Hecke algebras, including symmetric groups in positive
characteristic.Comment: 32 pages; minor changes to section
On-sky tests of the CuReD and HWR fast wavefront reconstruction algorithms with CANARY
CuReD (Cumulative Reconstructor with domain Decomposition) and HWR (Hierarchical Wavefront Reconstructor) are novel wavefront reconstruction algorithms for the Shack–Hartmann wavefront sensor, used in the single-conjugate adaptive optics. For a high-order system they are much faster than the traditional matrix–vector-multiplication method. We have developed three methods for mapping the reconstructed phase into the deformable mirror actuator commands and have tested both reconstructors with the CANARY instrument. We find out that the CuReD reconstructor runs stably only if the feedback loop is operated as a leaky integrator, whereas HWR runs stably with the conventional integrator control. Using the CANARY telescope simulator we find that the Strehl ratio (SR) obtained with CuReD is slightly higher than that of the traditional least-squares estimator (LSE). We demonstrate that this is because the CuReD algorithm has a smoothing effect on the output wavefront. The SR of HWR is slightly lower than that of LSE. We have tested both reconstructors extensively on-sky. They perform well and CuReD achieves a similar SR as LSE. We compare the CANARY results with those from a computer simulation and find good agreement between the two
Representation-theoretic derivation of the Temperley-Lieb-Martin algebras
Explicit expressions for the Temperley-Lieb-Martin algebras, i.e., the
quotients of the Hecke algebra that admit only representations corresponding to
Young diagrams with a given maximum number of columns (or rows), are obtained,
making explicit use of the Hecke algebra representation theory. Similar
techniques are used to construct the algebras whose representations do not
contain rectangular subdiagrams of a given size.Comment: 12 pages, LaTeX, to appear in J. Phys.
On the Representation Theory of an Algebra of Braids and Ties
We consider the algebra introduced by F. Aicardi and J.
Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor
space representation for and show that this is faithful. We use
it to give a basis for and to classify its irreducible
representations.Comment: 24 pages. Final version. To appear in Journal of Algebraic
Combinatorics
Weyl approach to representation theory of reflection equation algebra
The present paper deals with the representation theory of the reflection
equation algebra, connected with a Hecke type R-matrix. Up to some reasonable
additional conditions the R-matrix is arbitrary (not necessary originated from
quantum groups). We suggest a universal method of constructing finite
dimensional irreducible non-commutative representations in the framework of the
Weyl approach well known in the representation theory of classical Lie groups
and algebras. With this method a series of irreducible modules is constructed
which are parametrized by Young diagrams. The spectrum of central elements
s(k)=Tr_q(L^k) is calculated in the single-row and single-column
representations. A rule for the decomposition of the tensor product of modules
into the direct sum of irreducible components is also suggested.Comment: LaTeX2e file, 27 pages, no figure
Recommended from our members
The impact of impaired semantic knowledge on spontaneous iconic gesture production
Background: Previous research has found that people with aphasia produce more spontaneous iconic gesture than control participants, especially during word-finding difficulties. There is some evidence that impaired semantic knowledge impacts on the diversity of gestural handshapes, as well as the frequency of gesture production. However, no previous research has explored how impaired semantic knowledge impacts on the frequency and type of iconic gestures produced during fluent speech compared with those produced during word-finding difficulties.
Aims: To explore the impact of impaired semantic knowledge on the frequency and type of iconic gestures produced during fluent speech and those produced during word-finding difficulties.
Methods & Procedures: A group of 29 participants with aphasia and 29 control participants were video recorded describing a cartoon they had just watched. All iconic gestures were tagged and coded as either “manner”, “path only”, “shape outline” or “other”. These gestures were then separated into either those occurring during fluent speech or those occurring during a word-finding difficulty. The relationships between semantic knowledge and gesture frequency and form were then investigated in the two different conditions.
Outcomes & Results: As expected, the participants with aphasia produced a higher frequency of iconic gestures than the control participants, but when the iconic gestures produced during word-finding difficulties were removed from the analysis, the frequency of iconic gesture was not significantly different between the groups. While there was not a significant relationship between the frequency of iconic gestures produced during fluent speech and semantic knowledge, there was a significant positive correlation between semantic knowledge and the proportion of word-finding difficulties that contained gesture. There was also a significant positive correlation between the speakers’ semantic knowledge and the proportion of gestures that were produced during fluent speech that were classified as “manner”. Finally while not significant, there was a positive trend between semantic knowledge of objects and the production of “shape outline” gestures during word-finding difficulties for objects.
Conclusions: The results indicate that impaired semantic knowledge in aphasia impacts on both the iconic gestures produced during fluent speech and those produced during word-finding difficulties but in different ways. These results shed new light on the relationship between impaired language and iconic co-speech gesture production and also suggest that analysis of iconic gesture may be a useful addition to clinical assessment
- …