72 research outputs found

    AN EFFECTIVE OPTIMIZATION ALGORITHM FOR LOCALLY NONCONVEX LIPSCHITZ FUNCTIONS BASED ON MOLLIFIER SUBGRADIENTS

    Get PDF
    We present an effective algorithm for minimization of locally nonconvex Lipschitz functions based on mollifier functions approximating the Clarke generalized gradient. To this aim, first we approximate the Clarke generalized gradient by mollifier subgradients. To construct this approximation, we use a set of averaged functions gradients. Then, we show that the convex hull of this set serves as a good approximation for the Clarke generalized gradient. Using this approximation of the Clarke generalized gradient, we establish an algorithm for minimization of locally Lipschitz functions. Based on mollifier subgradient approximation, we propose a dynamic algorithm for finding a direction satisfying the Armijo condition without needing many subgradient evaluations. We prove that the search direction procedure terminates after finitely many iterations and show how to reduce the objective function value in the obtained search direction. We also prove that the first order optimality conditions are satisfied for any accumulation point of the sequence constructed by the algorithm. Finally, we implement our algorithm with MATLAB codes and approximate averaged functions gradients by the Monte-Carlo method. The numerical results show that our algorithm is effectively more efficient and also more robust than the GS algorithm, currently perceived to be a competitive algorithm for minimization of nonconvex Lipschitz functions

    Stiffness and strength of stabilized organic soils—part i/ii: Experimental database and statistical description for machine learning modelling

    Get PDF
    This paper presents the experimental database and corresponding statistical analysis (Part I), which serves as a basis to perform the corresponding parametric analysis and machine learning modelling (Part II) of a comprehensive study on organic soil strength and stiffness, stabilized via the wet soil mixing method. The experimental database includes unconfined compression tests performed under laboratory-controlled conditions to investigate the impact of soil type, the soil’s organic content, the soil’s initial natural water content, binder type, binder quantity, grout to soil ratio, water to binder ratio, curing time, temperature, curing relative humidity and carbon dioxide content on the stabilized organic specimens’ stiffness and strength. A descriptive statistical analysis complements the description of the experimental database, along with a qualitative study on the stabilization hydration process via scanning electron microscopy images. Results confirmed findings on the use of Portland cement alone and a mix of Portland cement with ground granulated blast furnace slag as suitable binders for soil stabilization. Findings on mixes including lime and magnesium oxide cements demonstrated minimal stabilization. Specimen size affected stiffness, but not the strength for mixes of peat and Portland cement. The experimental database, along with all produced data analyses, are available at the Texas Data Repository as indicated in the Data Availability Statement below, to allow for data reproducibility and promote the use of artificial intelligence and machine learning competing modelling techniques as the ones presented in Part II of this paper.</jats:p

    TACAN is an essential component of the mechanosensitive ion channel responsible for pain sensing

    Get PDF
    Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying several physiological functions such as touch and pain sensing, hearing and proprioception. This process is carried out by specialized mechanosensitive ion channels whose identities have been discovered for most functions except pain sensing. Here we report the identification of TACAN (Tmem120A), an essential subunit of the mechanosensitive ion channel responsible for sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically-evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, knocking down TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to mechanical but not to thermal pain stimuli, without affecting the sensitivity to touch stimuli. We propose that TACAN is a pore-forming subunit of the mechanosensitive ion channel responsible for sensing mechanical pain

    New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth

    Get PDF
    Purpose: Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. Methods: Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. Results: We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. Conclusions: We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment

    the effects of climate change on the multifunctional role of basilicata s forests the effects induced on yield and co2 absorption

    Get PDF
    The first studies on the possible impact of climate change on European forests and the development of adaptation and mitigation strategies began in the 1990s and resulted in the identification of risk assessment models and forest management tools. The prediction of climate change impacts on forests has been based using the evidence theory or Dempster-Shafer (DS)'s theory, appropriately spatialised. The implemented evidence lines refer to the concepts of vulnerability and resilience. The results of the DS model, applied to the Basilicata region, were utilised to assess the loss in biomass production capacity and CO2 absorption ability of different forest-derived biomasses. The loss in stumpage value and in the estimated CO2 absorption shows a reduction over time of forest system's economic value that is basically higher in 2050 than in 2100. The applied methodological approach has shown that the high degree of spatial and information detail may be helpful to produce good predictions to envisage environmental policy strategies for the monitoring and mitigation of the damages caused by the climate change, with a view to ensuring the ecosystems' capacity to produce positive externalities, including air carbon sequestration capacity

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Climate change impacts and adaptation in forest management: a review

    Get PDF
    • 

    corecore