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ABSTRACT 25 

Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. 26 

In recent years, it has received increasing attention from both research and practice. However, 27 

a common understanding of what resilience means in a forestry context, and how to 28 

operationalise it is lacking. Here, we conducted a systematic review of the recent forest 29 

science literature on resilience in the forestry context, synthesising how resilience is defined 30 

and assessed.  31 

Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of 32 

engineering resilience, ecological resilience, and social-ecological resilience are used in forest 33 

sciences. A clear majority of the studies applied the concept of engineering resilience, 34 

quantifying resilience as the recovery time after a disturbance. The two most used indicators 35 

for engineering resilience were basal area increment and vegetation cover, whereas ecological 36 

resilience studies frequently focus on vegetation cover and tree density. In contrast, important 37 

social-ecological resilience indicators used in the literature are socio-economic diversity and 38 

stock of natural resources. In the context of global change, we expected an increase in studies 39 

adopting the more holistic social-ecological resilience concept, but this was not the observed 40 

trend. 41 

Summary Our analysis points to the nestedness of these three resilience concepts, suggesting 42 

that they are complementary rather than contradictory. It also means that the variety of 43 

resilience approaches does not need to be an obstacle for operationalisation of the concept. 44 

We provide guidance for choosing the most suitable resilience concept and indicators based 45 

on the management, disturbance and application context. 46 

KEYWORDS: forest management, engineering resilience, ecological resilience, social-47 

ecological resilience, disturbance, indicators 48 
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1. Introduction  52 

 53 

Global change causes shifts in forest disturbance regimes [1,2] that can potentially reduce the 54 

capacity of forests to provide ecosystem services [3]. The change may furthermore alter the 55 

distribution of species [4,5] including forest-dependent species that, if not able to migrate as 56 

their habitat shifts, can face extinction [6]. Interacting disturbances can alter forest 57 

development pathways [7], and an increased disturbance frequency can erode the capacity of 58 

forests to recover [8,9]. In addition to environmental changes, societies and societal demands 59 

towards forests are changing, and therefore forest-related policies must change as well to meet 60 

these demands, e.g. in relation to climate change mitigation [10] or the development of a 61 

wood-based bioeconomy [11]. It has been suggested that neither the traditional command-62 

and-control forest management nor classical risk management in forestry are able to respond 63 

adequately to this multitude of changes and challenges [12,13].  64 

Resilience is one of the current buzzwords in science and policy and fostering resilience has 65 

been proposed as a solution to deal with the uncertainty caused by global change [14–16]. 66 

However, resilience is a difficult concept to define, as demonstrated by the numerous 67 

definitions and approaches available in the literature [17,18]. This ambiguity is partly due to 68 

the widespread use of the term in different disciplines and systems. As a result, the scientific 69 

literature diverges on whether resilience should be considered as a system property, process or 70 

outcome of management [18]. In the literature on social-ecological systems, three broad 71 

conceptualisations of the term resilience have emerged: engineering, ecological and social-72 

ecological resilience [19]. Engineering resilience is often cited as first defined by Pimm [20]. 73 

Following a disturbance in a given system, it is characterised as the time that it takes for 74 

variables to return to their pre-disturbance equilibrium. This definition assumes the existence 75 

of a single equilibrium state. Ecological resilience, defined by Holling [21], is “a measure of 76 

the persistence of systems and of their ability to absorb change and disturbance and still 77 

maintain the same relationships between populations or state variables”. Holling’s theory 78 

includes the proposition that systems can be in multiple equilibria (i.e. have multiple basins of 79 

attraction). A basin of attraction is a concept from systems science describing a portion of the 80 

phase space in which every point will eventually gravitate back to the attractor [22]. A 81 

disturbance can move the system from one basin to another, and cross a threshold during the 82 

process. Finally, the concept of social-ecological resilience considers natural and social 83 

systems to be strongly coupled social-ecological systems [23]. Social-ecological resilience 84 

considers the maintenance of the current regime and the adaptive capacity of a coupled 85 

human-natural system [24]. Several variants of social-ecological resilience exist but all focus 86 

on the adaptive capacity of the social-ecological system as a whole [25]. Among them, the 87 

Resilience Alliance, the school of thought in the footsteps of Holling, defined resilience as 88 

“the capacity of a social-ecological system to absorb or withstand perturbations and other 89 

stressors such that the system remains within the same regime, essentially maintaining its 90 

structure and functions. It describes the degree to which the system is capable of self-91 

organisation, learning, and adaptation” [26,27].  92 
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While resilience is widely considered in forest ecology, the resilience concept has not been 93 

implemented widely in the daily practice of forest management [28]. However, elements of 94 

resilience thinking, e.g. the necessity to learn and adapt, are a necessity for forest managers 95 

who are confronted with the frequent challenge of unexpected disturbance patterns interfering 96 

with well-planned management procedures. A primary limitation to implementing resilience 97 

in forest management is that, despite the growing body of research, forest resilience continues 98 

to be a vague concept for decision makers. Reviews of existing resilience concepts and their 99 

relevance to natural resource management in general [29,30] and forest management in 100 

particular [31] have been conducted previously, yet there is no common agreement to date on 101 

how resilience in the context of forestry should be defined or applied. Different resilience 102 

concepts are used in seemingly similar situations without much effort paid to the justification 103 

of the selected concept. Guidance for developing and implementing measurement, 104 

monitoring, and evaluation schemes of resilience is widely lacking [18,32]. These challenges 105 

in operationalising resilience prevent a widespread implementation of resilience thinking in 106 

forest management. In order to answer a core question of forest managers today, namely, how 107 

to manage forests to increase their resilience to global change, a clearer understanding of the 108 

use of the resilience concepts in forest science is needed to provide a way forward for both 109 

researchers and forest managers.  110 

This paper aims at facilitating the application of resilience in the context of forestry by 111 

clarifying its meaning and purpose through performance of a systematic review of the 112 

resilience concepts and their assessment approaches used in forest science. We had three 113 

objectives: 114 

1. To evaluate the adoption of the three mentioned concepts in resilience research in 115 

forest sciences. We were particularly interested in the current use and geographical 116 

spread of the concepts, the trend in their use, as well as the methods and indicators 117 

applied to assess resilience.  118 

2. To analyse similarities and differences between the applied resilience concepts, and to 119 

examine how conflicting they are with each other. 120 

3.  To develop guidance for the use of the resilience concepts in forest management and 121 

policy. 122 

We hypothesised that:  123 

 In the context of facing global change, the use of more holistic resilience concepts, 124 

such as social-ecological resilience, is increasing. 125 

 Forest resilience is a widely adopted concept in forest science, but its large variety of 126 

approaches prevents its mainstreaming into forestry practice.  127 

2. Materials and methods 128 

 129 

We reviewed how forest resilience is currently assessed in the scientific literature. We 130 

searched the literature using the Scopus database (Relx Group, 2018) using the search string 131 

TITLE-ABS-KEY (“resilience” AND “forest”) ALL (“measur*” OR “manag*”) PUBYEAR 132 

> 1999. Applying the search string in the Scopus database guaranteed that results were 133 

published in scientific journals. As resilience related research started to increase dramatically 134 

after 1999 [24], the focal time period was 2000-2018. The cut-off date for including new 135 



4 
 

publications was August 19
th

, 2018. We screened all identified abstracts. All abstracts that 1) 136 

were published in a peer-reviewed scientific journal in English, and 2) had the word 137 

“resilience” in relation to an active verb (e.g. manage, calculate, enhance, improve, assess) 138 

and 3) focused on forest-related systems (e.g. tree species or forest-dependent communities), 139 

natural resource management or landscape management, were further screened. We also 140 

accepted studies that proposed a way to assess resilience for non-specified ecosystems as 141 

these could also apply to forests. Further screening of the full papers checked if they 4) have 142 

definition of resilience; and 5) propose a method to assess resilience either in qualitative or 143 

quantitative terms. Only the studies that fulfilled all five criteria were selected for further 144 

analysis. 145 

To examine how widely the three different resilience concepts were adopted in the literature, 146 

the studies were classified into three groups based on their concept of resilience: engineering, 147 

ecological, and social-ecological resilience. The classification was done by recording the 148 

resilience concept used and comparing them with the foundational studies for the respective 149 

concept, see higher. If studies mentioned several concepts, we focused on the method used to 150 

evaluate resilience, and derived the adopted concept from there. We also evaluated the trend 151 

in the number of studies published per year, and in the share of the three concepts among 152 

studies. In addition, we assessed the biome where the study was conducted. For biome 153 

delineation, we used the definitions of Olson et al. [33]. The distribution across biomes was 154 

calculated in relation to the number of studies in the three resilience concept classes 155 

separately. Biomes that represented less than 5 % of the studies in any of the resilience 156 

concept categories were grouped in “Other”.  157 

To explore if the three resilience concepts conflicted with each other and in what situations 158 

they were applied, we assessed the response system/variable (resilience of what?) and the 159 

disturbance of concern (resilience to what?) of each study. The categories for the response 160 

system/variable were: Tree populations, Non-tree vegetation, Forest animal and fungal 161 

communities, Soil, Forest ecosystem, Not specified ecosystem, Forest-related social-162 

ecological system, Forest industry, and Other. The categories for the disturbance of concern 163 

were: Drought, Fire, Wind, Climate change, Other abiotic disturbance, Biotic disturbance, 164 

Forest management operation, Land-use, Global change, Societal, economic and policy 165 

shocks, Multiple disturbances, and Other. In addition, we assessed whether the proposed 166 

evaluation method in the studies was qualitative or quantitative. Furthermore, we recorded the 167 

main method used to assess resilience. The distinguished categories for the method used were: 168 

Tree-level sampling, Vegetation sampling, Animal population sampling, Soil sampling, 169 

Multiple agent (animal population, vegetation and soil) sampling, Forest site inventory, 170 

Conceptual modelling, Empirical modelling, Process-based modelling, Geographical 171 

Information System/Remote sensing approach, Historical records, Meta-analysis, Surveys, 172 

and Multi-tool (when there was no single prevalent method).  173 

We examined the indicators used to assess resilience (see Online Resource 3). As most of the 174 

studies assessed more than one indicator, we recorded the total number of indicators used to 175 

assess resilience in each study. For example, if a study assessed resilience with regard to 176 

species richness, species composition, functional diversity, number of seedlings, and drought 177 

index, we counted five indicators in total. We documented the ten most widely used indicators 178 

for each resilience concept by calculating the relative number of studies using them. In the 179 

case of the tenth most used indicator, we recorded all the indicators that were used with the 180 

same frequency. In addition, we classified the indicators according the Organization for 181 
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Economic Co-operation and Development’s (OECD) Pressure-State-Response (PSR) 182 

framework [34]. We further organised the indicators into larger groups (see Online Resource 183 

4). Grouping the individual indicators together gives a better overview of which 184 

compartments of a system are used to study resilience and how the compartments vary 185 

according to the resilience concept used. A compartment here describes the part of the system 186 

under study, e.g. forest structure, soil properties, and socio-economic structure. The indicator 187 

groups were: Climate indicators, Soil properties, Disturbance effects, Forest structure, Forest 188 

regeneration, Tree and ecosystem production and transpiration, Biodiversity, Land-use, 189 

Ecosystem management objective, Socio-economic capacity, Socio-economic diversity, 190 

Finance and technological infrastructure, Governance, Time, and Other. In the previously 191 

described example of the study reporting five resilience indicators, we would have counted 192 

three indicators describing Biodiversity, one for Forest regeneration and one for Climate. We 193 

analysed the trend of the average number of indicators used to evaluate resilience over time 194 

by fitting a linear regression to the time series of the average number of indicators in R [35]. 195 

To buffer extreme values, we used a three-year moving average of the indicators used. In 196 

addition, we performed a non-metric multidimensional scaling (NMDS) to describe how 197 

studies were ordered based on the recorded indicator groups, and how this was related to the 198 

resilience concept they used. We used the metaMDS function with Gower distance and seed 199 

123 from the package “vegan” [36] in R [35]. Figures were created with the package 200 

“ggplot2” [37]. 201 

 202 

3. Results 203 

 204 

The initial search resulted in 2,629 peer-reviewed studies that were all screened (see Online 205 

Resource 1). The abstracts that fulfilled the first three selection criteria were chosen for 206 

further analysis, narrowing the set down to 625 studies (see Online Resource 2). Of these a 207 

final set of 255 studies also fulfilled the selection criteria 4 and 5 [8,9,13,16,31,38–287]. One 208 

of the reviewed studies was in press during the review process and was published in 2019 but 209 

we included it in the studies published in 2018.  210 

 211 

3.1. Trends in forest resilience research 212 

 213 

The 255 studies identified as relevant for our review were classified according to the 214 

resilience concept they used. The majority of the studies employed the engineering resilience 215 

concept (54 %), while ecological and socio-ecological resilience concepts were applied in 31 216 

% and 15 % of studies respectively.  217 

The publication rate of studies assessing resilience had steadily increased over the 218 

investigated period (Fig. 1). The use of the engineering resilience concept appeared to have 219 

increased strongly after 2012. The use of ecological resilience had also increased but at a 220 

slower rate than engineering resilience. Social-ecological resilience was the least used concept 221 

and its application appeared to have increased only moderately.  222 
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 223 

Fig. 1 The development of the use of the three resilience concepts in forest resilience studies from 2000 to 2018. 224 
The figure shows the number of studies using engineering, ecological or social-ecological resilience concepts 225 
and the total number of forest resilience studies published per year. The cut-off date for the review was in mid-226 
August 2018, and therefore not all studies published in 2018 were included in the review. 227 

 228 

3.2. Geographical spread of resilience concept applications 229 

 230 

Our review contained studies from 11 different biomes (Fig. 2). Engineering resilience was 231 

mostly used in studies of temperate broadleaved and mixed forests, and in Mediterranean 232 

forests, woodlands and scrubs (24 % and 19 % of the studies using engineering resilience 233 

concept, respectively). Ecological resilience was often used in studies that concerned either 234 

several biomes (20 %) or temperate conifer forests (18 %). Social-ecological resilience was 235 

used the most in tropical broadleaved forests (23 %) as well as in temperate conifer forests 236 

(21 %).  237 

 238 
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 239 

Fig. 2 The use of the resilience concepts by forest biome. The figure shows the share of the biomes studied for 240 
each of the three resilience concepts. N/A means that no biome was mentioned in a study.  241 

 242 

3.3. Resilience of what and to what 243 

 244 

Forest ecosystems were the most studied system (34 % of all studies). Engineering resilience 245 

was most used for studying either tree populations or forest ecosystems (35 % of studies using 246 

the engineering resilience concept), whereas ecological resilience was the most used in forest 247 

ecosystems and non-specified ecosystem studies (49 % and 24 % of studies using the 248 

ecological resilience concept, respectively). Social-ecological resilience was used in forest-249 

related social-ecological systems and studies on the forest industry (73 % and 20 % of the 250 

studies using the social-ecological resilience concept, respectively) (Table 1). 251 

Table 1 The percentages of the studied systems (“resilience of what”) in relation to the three resilience concepts 252 
and all of the reviewed studies. 253 

System of interest Engineering 

resilience 

(%) 

Ecological 

resilience 

(%)  

Social-

ecological 

resilience 

(%) 

All 

studies 

(%) 

Trees (individual or populations) 35 15 0 23 

Forest animal population 6 5 0 5 

Forest ecosystem 35 49 0 34 

Non-tree vegetation 12 4 0 7 

General ecosystem 5 24 0 10 

Soils 5 1 0 3 

Forest industry 0 0 20 3 

Forest related social-ecological 

system 

0 1 73 12 

Other 3 0 8 3 

 254 
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Drought was the most studied disturbance (22 % of all the studies) and 32 % of the studies 255 

applying the concept of engineering resilience focused on drought. Fire was the second most 256 

studied disturbance (13 % of all the studies), and 17 % of the studies of engineering resilience 257 

focused on fire. Ecological resilience was used equally for studying the effects of drought, 258 

climate change or other disturbances (15 % of the studies using the ecological resilience 259 

concept, each). Finally, social-ecological resilience was most used in studies concerned with 260 

global change and more specifically climate change (28 % and 21 % of the studies using the 261 

social-ecological resilience concept, respectively).  262 

For studies using an engineering resilience concept, the most common method was to either 263 

collect tree-level samples (26 %) or other vegetation samples (24 %). Studies assessing 264 

ecological resilience mostly relied on conceptual modelling (28 %) or vegetation samples (19 265 

%). Studies using a social-ecological resilience concept also made use of conceptual 266 

modelling (45 %) or socio-economic surveys (25 %). The majority of the studies assessing 267 

engineering and ecological resilience were quantitative (78 % and 65 % respectively), 268 

whereas the majority of the studies focusing on the social-ecological resilience concept were 269 

qualitative (83 %). 270 

 271 

3.4. Indicators used to assess resilience 272 

 273 

The most used indicators for each resilience concept are shown in Table 2. Engineering and 274 

ecological resilience shared six of their respective top-ten indicators, whereas the top 275 

indicators used to assess social-ecological resilience were completely different from the other 276 

two concepts. The ecological indicators used in the social-ecological resilience concept were 277 

less specific, compared to the ones used in the engineering and ecological resilience concept. 278 

The State-type indicators dominated the most used indicators list (52.5 %) whereas Response- 279 

and Pressure-type indicators were less common (32.5 % and 15.0 % respectively). 280 

Table 2 The most frequently used indicators for each resilience concept. Numbers in parentheses indicate the 281 
percentage of studies applying a given resilience concept using the indicator. The colour of the cell expresses the 282 
type of indicator according to the classification of OECD’s environmental indicators [34]. Blue cells are 283 
Pressure-type indicators, green cells are State-type indicators and yellow cells are Response-type indicators.  284 

Indicator 

rank of 

occurrence 

Engineering resilience 

 

Ecological 

resilience 

 

Social-ecological 

resilience 

 

All reviewed 

studies 

1 Basal area increment (27.5 

%) 

Vegetation cover 

(13.9 %) 

Socio-economic 

diversity  

(30.0 %) 

Basal area 

increment  

(17.6 %) 

2 Vegetation cover  

(15.4 %) 

Density or number 

of trees  

(13.9 %) 

Biodiversity  

(22.5 %) 

Vegetation cover 

(12.5 %) 
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3 Species richness  

(10.3 %) 

Basal area 

increment  

(11.4 %) 

Stock of natural 

resources  

(20.0 %)  

Species 

composition  

(9.0 %) 

4 Species composition  

(10.3 %) 

Biomass  

(11.4 %) 

Networks  

(20.0 %) 

Species richness 

(8.2 %) 

5 Precipitation  

(10.3 %) 

Species 

composition  

(11.4 %) 

Knowledge  

(17.5 %) 

Biomass  

(7.5 %) 

6 Standardised Precipitation 

Evapotranspiration Index 

(9.6 %) 

Species diversity 

(10.1 %) 

Income  

(17.5 %) 

Regeneration  

(7.1 %) 

7 Density or number of 

surviving trees  

(9.6 %) 

Basal area  

(10.1 %) 

Access to resources  

(15.0 %)  

Precipitation  

(7.1 %) 

8 Regeneration  

(8.1 %) 

Regeneration  

(8.1 %) 

Participation in 

community 

organisations  

(15.0 %) 

Standardised 

Precipitation 

Evapotranspiration 

Index  

(6.3 %) 

9 Biomass  

(7.4 %) 

Species richness 

(8.9 %) 

Education  

(12.5 %) 

Density/number of 

surviving trees 

(5.1 %) 

10 

 

 

 

 

 

 

 

 

 

Density or number of 

seedlings  

(7.4 %) 

 

 

 

 

 

 

 

 

 

Mortality  

(8.9 %) 

 

 

Agricultural 

practices (10.0 %) 

 

Socio-economic 

diversity  

(4.7 %) 

 

 

 

 

 

 

 

 

 

Disturbance 

severity  

(8.9 %) 

 

 

 

 

 

 

 

 

Human Population 

density (10.0 %) 

Ecosystem services 

(10.0 %) 

Employment  

(10.0 %) 

Housing (10.0 %) 

Health services 

(10.0 %) 

Individual health 

(10.0 %) 

 

Water and 

sanitation (10.0 %) 

 

Transport (10.0 %) 
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Skills (10.0 %) 

 285 

The most used indicator groups for engineering and ecological resilience were related to 286 

forest structure (20% and 24% respectively) and forest biodiversity (19% and 15% 287 

respectively). For studies focusing on social-ecological resilience, the most used indicators 288 

were related to the socio-economic capacities (41%) and the second most used indicator group 289 

was related to finances and technical infrastructure (14%). The NMDS analysis of studies 290 

based on the indicator groups used showed a clear separation between engineering/ecological 291 

resilience and social-ecological resilience (Fig. 3). Based on the similarity with regard to the 292 

indicator groups used, engineering and ecological resilience concepts have a strong overlap. 293 

In contrast, studies that used social-ecological resilience employed very different groups of 294 

indicators.  295 

 296 

Fig. 3 The indicator groups used to assess resilience, ordinated in two dimensions based on the NMDS analysis. 297 
The NMDS gives a representation of the relationship between objects (studies) and descriptors (indicator groups) 298 
in a reduced number of dimensions. The x- and y-axes are the first two axes with the highest explicative values 299 
in ordination space. The location of different indicator groups are shown in letters. The indicator groups are 300 
Forest structure (F1), Biodiversity (F2), Climate indicators (CI), Forest regeneration (F3), Tree and ecosystem 301 
production and transpiration (F4), Disturbance effects (DE), Soil properties (S), Land use (LU), Ecosystem 302 
management objective (EMO), Socio-economic capacities (SEC), Socio-economic diversity (SED), Finances 303 
and technological infrastructure (FTI), Governance (G), Time, and Other. 304 

The average number of indicators used per study did increase over time (p-value 0.01). 305 

However, the number of indicators used did not increase for all of the resilience concepts. For 306 

ecological resilience and social-ecological resilience the average amount of indicators per 307 

study significantly increased (p-values <0.001 and 0.004, respectively), whereas it did not 308 
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increase for engineering resilience (p-value 0.5) (Fig. 4). Assessments of social-ecological 309 

resilience use on average more indicators than assessments of ecological or engineering 310 

resilience (7 indicators vs. 4 and 3, respectively). 311 

 312 

Fig. 4 The moving average of number of indicators per study. The averages are calculated for three-year periods 313 
except for 2000 and 2018, which were calculated for two-year periods.  314 

 315 

4. Discussion 316 

 317 

4.1. Adoption of the three resilience concepts in the forest 318 

literature 319 

 320 

Our results for the first objective show that forest resilience is globally studied and that each 321 

of the alternative resilience concepts is widely applied in the scientific literature. Of the three 322 

concepts, engineering resilience is clearly the most frequently used in forest science, with 323 

ecological resilience the second most frequently applied and social-ecological resilience being 324 

the least used concept.  325 

The frequent and increasing use of engineering resilience in forest resilience literature was 326 

surprising, as we hypothesised that the more holistic concept of social-ecological resilience 327 

would get more commonly used in response to the serious problems caused by global change 328 

[288]. Other studies proposed several reasons for the widespread use of engineering 329 
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resilience. First, the concept is very versatile and can be adapted to different systems, as 330 

recovery can be measured based on a variety of indicators [289]. Engineering resilience was 331 

the only concept where the average number of indicators used per study has not increased 332 

significantly during the last 18 years. One explanation might be that the key indicators for 333 

engineering resilience have been identified in previous research already, and that there is no 334 

need to broaden the indicator set. For example, 31 out of the 136 reviewed studies using the 335 

engineering resilience concept adopted the approach presented by Lloret et al. [8] to examine 336 

the resilience of trees to drought by measuring the basal area increment before, during and 337 

after the drought. Second, the concept is clearly defined and intuitive to understand. This is in 338 

contrast to ecological and social-ecological resilience which are both debated concepts in 339 

terms of their exact definitions [290].  340 

However, our search terms could also have caused a bias towards engineering resilience. It is 341 

conceivable that studies applying the social-ecological resilience concept would focus less on 342 

measuring or quantifying resilience, thus lacking an active verb connected with resilience. As 343 

such studies come from more diverse scientific backgrounds, perhaps they place less 344 

emphasis on how resilience is quantified or assessed. The strong presence of the reviewed 345 

articles belonging to the ecological literature, in which resilience is studied as a system 346 

property and the focus is on the capacity of systems to resist change and recover from a 347 

disturbance [18], supports this interpretation. Furthermore, resilience receives considerable 348 

criticism from the social sciences [291–293] and it is therefore conceivable that some social 349 

science studies on resilience related research questions may not actually use the term, as they 350 

reject its conceptual approach [294]. Therefore, the scarcity of studies adopting the concept of 351 

social-ecological resilience in our review might be due to the recommendation to use social-352 

ecological resilience as an analytical approach for social-ecological systems, rather than a 353 

descriptive concept of a system property [290]. Such an analytical approach does not 354 

necessarily aim to quantify resilience but rather to deal with uncertainty. Nevertheless, our 355 

results show that social-ecological resilience can be assessed in both qualitative [161,167] and 356 

quantitative [174] ways.  357 

The use of engineering resilience also has clear limitations. As the concept assumes the 358 

existence of only one stable state [20] and measures performance against the pre-disturbance 359 

state, it is thus mainly applied in studies over a short timeframe and for situations where the 360 

environmental conditions are variable but where a regime shift is unlikely. Yet, such a 361 

situation can rarely be assumed under global change [295]. In such a setting of continuous 362 

change, maintaining high engineering resilience might require a high level of anthropogenic 363 

inputs, e.g. fertilisers or intensive re-planting of selected tree species, which in turn would 364 

lead to so called “coerced resilience” that mimics the response of a resilient ecosystem but is 365 

only possible with continuous human intervention and risks being highly maladaptive [296]. 366 

Furthermore, assessing resilience in a deterministic (as opposed to considering stochasticity) 367 

and short-term manner could lead to missing important system pathways and long-term 368 

trajectories. These shortcomings of the concept for the analysis of forest systems increase 369 

with the impact of global change, and the concept should hence be used only with a clear 370 

acknowledgement of its limitations. 371 

 372 



13 
 

4.2. The differences and complementarity among the resilience 373 

concepts 374 

 375 

As to the second objective, there is an apparent difference in the use of engineering and 376 

ecological resilience on the one hand and social-ecological resilience on the other hand with 377 

regard to the systems and disturbances studied and the indicators used (Fig. 3). Previous 378 

literature reviewing the concept of resilience has identified several disparities in the 379 

conceptualisation of the resilience definitions and the underlying assumptions, which are in 380 

line with our findings. Resilience has been perceived differently depending on the disciplinary 381 

background [18]. Ecological literature, where engineering and ecological resilience are 382 

commonly used, regards resilience as a system property whereas the study of social-383 

ecological systems looks at resilience as a strategy for managing complexity and uncertainty 384 

[18]. Furthermore, the ecological literature focuses on the capacity of a system to resist 385 

change and recover from it, whereas the social-ecological systems literature has a strong focus 386 

on transformation and self-evolvement of the system as a crucial part of management 387 

[18,297].  388 

On a conceptual level, the difference between the concepts lies in how they view the existence 389 

and shape of basins of attractions. For engineering resilience, resilience is measured by the 390 

steepness of the slope of the basin, indicating how quickly the system can return to the bottom 391 

after a disturbance [298]. For ecological resilience, the existence of multiple basins of 392 

attraction is assumed, and resilience is a measure for how much pressure is required for the 393 

system to move from one basin to another [298]. Social-ecological resilience assumes the 394 

existence of multiple basins of attractions as well [297], but the focus of this concept is on 395 

shaping the basin of attraction to keep the system contained in its current attractor via 396 

changing the social part of the system. This disciplinary disparity can explain why 397 

engineering and ecological resilience concepts use a very similar set of indicators whereas 398 

social-ecological resilience uses distinctively different types of indicators (see Table 2 and 399 

Figure 3). 400 

Our results reflect this conceptual background. For example, drought resilience of trees was 401 

the most commonly studied topic and engineering resilience was the most adopted concept for 402 

that topic. While much of this popularity can be attributed to a key paper published by Lloret 403 

et al. [8], tree growth is also a system that is unlikely to have multiple stable states, making 404 

the use of ecological or social-ecological resilience concepts unnecessary. Similarly, the 405 

prominent use of engineering resilience to assess forest ecosystems in our results could be 406 

explained by the authors’ perception of the existence of multiple basins of attractions for the 407 

studied system. While many scientists support the notion of forest ecosystems having multiple 408 

basins of attraction [299–301], some scientists see the evidence as limited [31] and therefore 409 

prefer to use the engineering resilience instead of the two other concepts. The aim and scope 410 

of the research clearly determined the researchers’ choice of the resilience concept in the 411 

reviewed studies. For this reason, some authors adopt a different concept of resilience in 412 

different studies [9,144,198], underlining the importance of precisely defining the term in 413 

each instance of its use [302], as well as reflections on the applicability of the chosen 414 

definition. Attention should furthermore be paid to whether or not resilience is used as a 415 

descriptive or normative concept as striving for enhanced resilience might lead to debates on 416 

the trade-offs of achieving a resilient system [18].  417 
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The definitions of the three concepts further illustrate a difference in complexity: engineering 418 

resilience is purely defined as recovery of the system, ecological resilience includes aspects of 419 

both resistance and recovery of the system, whereas social-ecological resilience includes 420 

resistance, recovery, adaptive capacity and the ability to transform [297]. It should be noted 421 

that studies using engineering resilience do not necessarily ignore the resistance or adaptive 422 

capacity of the system, but they consider them as independent concepts besides resilience, 423 

rather than as integral parts of resilience [39,94,208]. Some scientists argue for separating 424 

resistance, resilience and adaptive capacity into their own concepts for conceptual clarity and 425 

better operationalisation of resilience [94,289]. However, others argue that reducing resilience 426 

to such a simple dimension is focusing on maintaining the status quo of the system and this 427 

could actually lead to losing the resilience of social-ecological system [297].  428 

We argue that instead of striving towards one single resilience definition, resilience could be 429 

understood as an overarching concept of nested hierarchies as described also by the theory of 430 

basins of attraction [26]. According to this hierarchy, engineering resilience is nested inside 431 

ecological resilience, which in turn is nested inside social-ecological resilience (Fig. 6). 432 

Moving from one concept to another either adds or removes different dimensions from the 433 

system under study and changes the system boundaries. The interest in a certain property 434 

together with the disturbance of concern therefore indicate the resilience concept that is most 435 

applicable for the respective question or system to be analysed. The increasing complexity 436 

with increasing hierarchical levels of resilience also suggests that a broader suite of indicators 437 

is required to assess higher levels of resilience, which was supported by the results of our 438 

review.  439 

 440 

 441 

Fig. 6 The hierarchy of resilience concepts and assumptions behind each concept. The circles on the right show 442 
how resilience concepts are related to one another. The boxes on the left indicate increasing complexity in the 443 
systems that are studied by the respective resilience concepts. Variable environmental conditions mean 444 
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conditions where the conditions vary but remain in the historical range of variation. Changing environmental 445 
conditions mean that the conditions are no longer within the range of historical variation of the environment. 446 

 447 

4.3. Guidance on navigating the world of resilience 448 

 449 

Regarding our third objective on how to implement resilience in forestry practice, our review 450 

underlines that forest resilience is a flexible concept and can be adapted to many situations 451 

and questions. That is one reason for the popularity of the concept [17], as well as the 452 

widespread use in various biomes and research designs. For example, the engineering 453 

resilience concept was mainly used for studying pulse-type disturbances, such as drought and 454 

fire in the temperate and Mediterranean forest, ecological and social-ecological resilience 455 

were also used for press-type of disturbances, such as climate and global change, with more 456 

geographical spread.  457 

Regardless of the resilience concept the authors use, variable study scopes, combined with 458 

either simplification tendency (engineering resilience) or complexity (social-ecological 459 

analysis) of the concepts may hinder the wider implementation of resilience thinking in forest 460 

management practice. The results of the review support our first hypothesis on how forest 461 

resilience lacks the consistent operational use that would be needed for implementation in 462 

practice. The lack of clarity in applying the concepts is a clear shortcoming. Some of the 463 

studies reviewed provide guidance and pathways for managing forests for resilience 464 

[31,88,94,198], proving that the concept can be operationalised with sufficient effort invested. 465 

Nevertheless, the resilience concepts lack established indicator frameworks that could be 466 

adopted by forest managers. The classification of the indicators according the OECD’s PSR-467 

framework showed that a majority of the indicators currently used in the forest resilience 468 

literature are state-type indicators. For a holistic indicator-based assessment, more focus 469 

should be placed on developing further indicators to assess both pressures and system 470 

responses to disturbances [303]. Guidance is needed to help forest managers to both choose 471 

which resilience concept could be the most suitable for their situation as well as identify 472 

proper indicators for assessing the selected concept. In the next sections we will address how 473 

managing for resilience is different from the risk management in forestry, and how to choose 474 

a suitable resilience concept. 475 

Some might consider resilience thinking to be redundant with current forest management 476 

practices. Dealing with uncertainty via risk assessments is a well-established practice in 477 

forestry [304]. Risk is by definition the effect of uncertainty on objectives [305], frequently 478 

expressed quantitatively in probabilistic terms [306], and risk-based management strategies 479 

are most effective when hazard probabilities are known [307]. However, the impacts of 480 

changes in disturbance regimes as well as of shocks caused by political and societal changes 481 

are currently unknown [308], which can cause risk management approaches to fail [307]. In 482 

contrast, resilience prepares for minimizing the damage caused by unknown, novel risks 483 

[307], making it a suitable management approach also for situations where the character and 484 

the magnitude of the risks are hard to identify. 485 

Based on our review of the literature on forest resilience, we provide some suggestions to 486 

guide practitioners and scientists in choosing the most suitable concept for them and which 487 

possible ways exist to assess these concepts.  488 
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1. Identify the managed system 489 

To choose the appropriate resilience concept, it is important to define the managed 490 

system [302]. Is the main interest to assess the resilience of one important tree species, 491 

ecosystem services provided, or a regional supply chain of forest enterprise? Does this 492 

system have alternative basins of attractions? Are the environmental and social 493 

changes likely to push the system to another stable state? Engineering resilience is a 494 

powerful concept for relatively simple systems (e.g. tree species growth, plant or 495 

animal population) that are not likely to change in the near future. Therefore, it could 496 

be appropriately used in assessing short-term resilience [289]. If alternative states for 497 

the system are known, e.g. forests transforming into savannah [301], or the system is 498 

rather complex (e.g. forest ecosystem), ecological resilience should be used instead of 499 

engineering resilience. If the system also includes social parts, as for example in a 500 

community forest and forest enterprise, social-ecological resilience should be used to 501 

capture the interactions between social and ecological systems. 502 

 503 

2. Identify the stressors or disturbances affecting the system. In addition to defining the 504 

system, the disturbances affecting the system should be identified [302]. Is the scope 505 

to assess the resilience to one single disturbance event e.g. storm, an interaction of 506 

several disturbances, e.g. drought, storm and bark beetles, or an ongoing change, e.g. 507 

climate or societal change? As engineering resilience measures the recovery to a pre-508 

disturbance state, it should be used only in cases where the pre-disturbance state is still 509 

achievable, meaning the system is not strongly affected by press type disturbance as, 510 

for example, climate change. Ecological resilience is suitable for both pulse and press 511 

type disturbances as well as changes in disturbance frequency, if the system of interest 512 

is an ecological system. Finally, managers and researchers facing changes in forest 513 

policies, market demands, or social use of the forest should use the concept of social-514 

ecological resilience. While this concept is perhaps the most difficult to adopt, it 515 

emphasises the need to reflect on the resilience of the social system as an 516 

interdependent counterpart of the natural system [297].  517 

 518 

3. Identify the temporal scale of interest. Engineering resilience can be appropriately 519 

used for assessing resilience on a short temporal scale [289]. However, many scientists 520 

caution against using engineering resilience over longer time scales as social and 521 

environmental conditions change and focusing on short term recovery might lead to 522 

ignoring the slow variables ensuring resilience [289,309,310]. For longer management 523 

time scales, we recommend using either ecological or social-ecological resilience.  524 

 525 

4. Consider the trade-off between accuracy and cost-efficiency in indicator selection. 526 

Our study revealed increasing requirements for indicator measurement, evaluation, 527 

and/or assessment in going from engineering to ecological and social-ecological 528 

resilience approaches. While the selection of indicators depends on the studied system, 529 

the presented indicators (Table 2) show a selection of the most used ones that have 530 

been applied in different systems and variable disturbance assessments. However, the 531 

use of indicators should always be carefully considered as one indicator might declare 532 

a system resilient and another one vulnerable. Therefore, using a holistic set of 533 

indicators that describe both structures as well as functions of the system is 534 
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recommended [289]. This might require considerably more work from the researchers 535 

and managers but it reduces the risk of falsely assessing resilience.  536 

Several other ways of defining and assessing resilience exist outside the social-ecological 537 

systems literature [18,311,312]. However, the concepts of engineering, ecological and social-538 

ecological resilience are very prominent in the forest science literature and we believe that our 539 

review contributes to clarifying the use of these concepts. More focus should be paid on how 540 

resilience concepts are implemented in practice. One further research direction should 541 

therefore look at how resilience is operationalised in forest management practice, e.g. by 542 

reviewing forest management plans and conducting social- empirical research with forest 543 

managers about how they deal with resilience related forest management decisions in practice. 544 

This work could result in recommendations on how scientific findings and concepts related to 545 

forest resilience can support forest management practice, such as a sophisticated decision 546 

support framework for the selection of the applicable resilience concept and indicators. More 547 

work will also be needed on how to interpret specific indicators and how to balance impacts 548 

on diverse management objectives across the proposed indicators.  549 

 550 

5. Conclusions 551 

 552 

In our rapidly changing world, resilience has gained wide popularity in forest management, 553 

but operationalising the concept still lags behind. We show how three major resilience 554 

concepts for studying social-ecological systems are used in the forest science literature, and 555 

how their assessment methods and interpretations differ. The variety of used resilience 556 

indicators is broad, with several popular ones emerging, such as basal area increment and the 557 

extent of vegetation cover.  558 

Our first hypothesis was that in a context of global change the use of broader resilience 559 

concepts, such as social-ecological resilience, would be increasing over time in comparison to 560 

more specific concepts, such as ecological and engineering resilience. This was not supported 561 

by the data, as the use of engineering resilience has clearly increased in comparison to 562 

ecological and social-ecological resilience. The context of the investigated studies appeared to 563 

be the main driver behind their choice for a resilience concept. However, we showed here that 564 

these resilience concepts are not exclusive but rather form a hierarchy with engineering 565 

resilience being an aspect of ecological resilience, and ecological resilience being part of the 566 

overarching social-ecological resilience. In this context, we provide guidance to forest 567 

managers and policy makers on how to consider context specific information on management 568 

type, disturbance regime, temporal scale of interest, and indicator needs that will help making 569 

forest resilience operational. 570 

Our second hypothesis was that forest resilience is a widely adopted concept in forest 571 

sciences, but it shows a large variety of assessment approaches, which may prevent its 572 

mainstreaming into forestry practice. The ordination of the studies based on the indicators 573 

they used confirms the large variety of approaches forest scientists use to assess resilience. 574 

However, we also showed that these approaches can be clearly attributed to one of three 575 

nested resilience concepts, that may be a useful basis for further improved operationalisation. 576 

Consequently, we reject this hypothesis, and give guidance for a context specific selection of 577 
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a suitable resilience concept and a related set of indicators, as a first step to future 578 

operationalisation.  579 

 580 
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