3,665 research outputs found
Experimental investigation of ultracold atom-molecule collisions
Ultracold collisions between Cs atoms and Cs2 dimers in the electronic ground
state are observed in an optically trapped gas of atoms and molecules. The Cs2
molecules are formed in the triplet ground state by cw-photoassociation through
the outer well of the 0g-(P3/2) excited electronic state. Inelastic
atom-molecule collisions converting internal excitation into kinetic energy
lead to a loss of Cs2 molecules from the dipole trap. Rate coefficients are
determined for collisions involving Cs atoms in either the F=3 or F=4 hyperfine
ground state and Cs2 molecules in either highly vibrationally excited states
(v'=32-47) or in low vibrational states (v'=4-6) of the a ^3 Sigma_u^+ triplet
ground state. The rate coefficients beta ~10^{-10} cm^3/s are found to be
largely independent of the vibrational and rotational excitation indicating
unitary limited cross sections.Comment: 4 pages, 3 figures, submitted for publicatio
Water benefits sharing for poverty alleviation and conflict management: Topic 3 Synthesis Paper
Influence of a Feshbach resonance on the photoassociation of LiCs
We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational
ground state through photoassociation into the B1Pi state, which has recently
been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)].
Absolute rate constants for photoassociation at large detunings from the atomic
asymptote are determined and are found to be surprisingly large. The
photoassociation process is modeled using a full coupled-channel calculation
for the continuum state, taking all relevant hyperfine states into account. The
enhancement of the photoassociation rate is found to be caused by an `echo' of
the triplet component in the singlet component of the scattering wave function
at the inner turning point of the lowest triplet a3Sigma+ potential. This
perturbation can be ascribed to the existence of a broad Feshbach resonance at
low scattering energies. Our results elucidate the important role of couplings
in the scattering wave function for the formation of deeply bound ground state
molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure
Population redistribution in optically trapped polar molecules
We investigate the rovibrational population redistribution of polar molecules
in the electronic ground state induced by spontaneous emission and blackbody
radiation. As a model system we use optically trapped LiCs molecules formed by
photoassociation in an ultracold two-species gas. The population dynamics of
vibrational and rotational states is modeled using an ab-initio electric dipole
moment function and experimental potential energy curves. Comparison with the
evolution of the v"=3 electronic ground state yields good qualitative
agreement. The analysis provides important input to assess applications of
ultracold LiCs molecules in quantum simulation and ultracold chemistry.Comment: 6 pages, 5 figures, EPJD Topical issue on Cold Quantum Matter -
Achievements and Prospect
Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors
We present quantitative measurements of the photoassociation of cesium
molecules inside a far-detuned optical dipole trap. A model of the trap
depletion dynamics is derived which allows to extract absolute photoassociation
rate coefficients for the initial single-photon photoassociation step from
measured trap-loss spectra. The sensitivity of this approach is demonstrated by
measuring the Franck-Condon modulation of the weak photoassociation transitions
into the low vibrational levels of the outer well of the 0g- state that
correlates to the 6s+6p3/2 asymptote. The measurements are compared to
theoretical predictions. In a magneto-optical trap these transitions have
previously only been observed indirectly through ionization of ground state
molecules
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
Forward Global Photometric Calibration of the Dark Energy Survey
Many scientific goals for the Dark Energy Survey (DES) require calibration of
optical/NIR broadband photometry that is stable in time and uniform
over the celestial sky to one percent or better. It is also necessary to limit
to similar accuracy systematic uncertainty in the calibrated broadband
magnitudes due to uncertainty in the spectrum of the source. Here we present a
"Forward Global Calibration Method (FGCM)" for photometric calibration of the
DES, and we present results of its application to the first three years of the
survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at
the observatory with data from the broad-band survey imaging itself and models
of the instrument and atmosphere to estimate the spatial- and time-dependence
of the passbands of individual DES survey exposures. "Standard" passbands are
chosen that are typical of the passbands encountered during the survey. The
passband of any individual observation is combined with an estimate of the
source spectral shape to yield a magnitude in the standard
system. This "chromatic correction" to the standard system is necessary to
achieve sub-percent calibrations. The FGCM achieves reproducible and stable
photometric calibration of standard magnitudes of stellar
sources over the multi-year Y3A1 data sample with residual random calibration
errors of per exposure. The accuracy of the
calibration is uniform across the DES footprint to
within . The systematic uncertainties of magnitudes in
the standard system due to the spectra of sources are less than
for main sequence stars with .Comment: 25 pages, submitted to A
Chemical Abundance Analysis of Tucana III, the Second -process Enhanced Ultra-Faint Dwarf Galaxy
We present a chemical abundance analysis of four additional confirmed member
stars of Tucana III, a Milky Way satellite galaxy candidate in the process of
being tidally disrupted as it is accreted by the Galaxy. Two of these stars are
centrally located in the core of the galaxy while the other two stars are
located in the eastern and western tidal tails. The four stars have chemical
abundance patterns consistent with the one previously studied star in Tucana
III: they are moderately enhanced in -process elements, i.e. they have
0.4 dex. The non-neutron-capture elements generally
follow trends seen in other dwarf galaxies, including a metallicity range of
0.44 dex and the expected trend in -elements, i.e., the lower
metallicity stars have higher Ca and Ti abundance. Overall, the chemical
abundance patterns of these stars suggest that Tucana III was an ultra-faint
dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is
the case for the one other galaxy dominated by -process enhanced stars,
Reticulum II, Tucana III's stellar chemical abundances are consistent with
pollution from ejecta produced by a binary neutron star merger, although a
different -process element or dilution gas mass is required to explain the
abundances in these two galaxies if a neutron star merger is the sole source of
-process enhancement.Comment: 18 pages, 10 figures; accepted by Ap
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
- …
