28 research outputs found

    Conserved BK Channel-Protein Interactions Reveal Signals Relevant to Cell Death and Survival

    Get PDF
    The large-conductance Ca2+-activated K+ (BK) channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3β (GSK3β) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite effect. This comparative systems approach suggests conservation in BK function across different species in addition to novel functions that may include the initiation of signals relevant to cell death/survival

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Referate

    No full text

    Baeyer-Villiger monooxygenases from microorganisms

    No full text
    The oxidation of bicyclo[3.2.0]hept-2-en-6-one and 7-endopropylbicyclo[3.2.0]hept-2-en-6-one was investigated using whole cells of Pseudomonas putida NCIMB 10007 and Xanthobacter autotrophicus NCIMB 10811. The bacteria demonstrated both regio- and enantioselective oxidation of the substrates. P. putida gave 'mirror image' products with both substrates when the products of these oxidations were compared with cells grown on the different enantiomers of camphor. The regio- and enantioselectivity of the oxidation of the substrates by X: autotrophicus were enhanced by the 7-endopropyl substitution of bicyclo[3.2.0]hept-2-en-6-on

    Selective Expression in Carotid Body Type I Cells of a Single Splice Variant of the Large Conductance Calcium- and Voltage-Activated Potassium Channel Confers Regulation by AMP-Activated Protein Kinase

    Get PDF
    Inhibition of large conductance calcium-activated potassium (BKCa) channels mediates, in part, oxygen sensing by carotid body type I cells. However, BKCa channels remain active in cells that do not serve to monitor oxygen supply. Using a novel, bacterially derived AMP-activated protein kinase (AMPK), we show that AMPK phosphorylates and inhibits BKCa channels in a splice variant-specific manner. Inclusion of the stress-regulated exon within BKCa channel α subunits increased the stoichiometry of phosphorylation by AMPK when compared with channels lacking this exon. Surprisingly, however, the increased phosphorylation conferred by the stress-regulated exon abolished BKCa channel inhibition by AMPK. Point mutation of a single serine (Ser-657) within this exon reduced channel phosphorylation and restored channel inhibition by AMPK. Significantly, RT-PCR showed that rat carotid body type I cells express only the variant of BKCa that lacks the stress-regulated exon, and intracellular dialysis of bacterially expressed AMPK markedly attenuated BKCa currents in these cells. Conditional regulation of BKCa channel splice variants by AMPK may therefore determine the response of carotid body type I cells to hypoxia

    The Large Conductance, Calcium-activated K+ (BK) Channel is regulated by Cysteine String Protein

    Get PDF
    Large-conductance, calcium-activated-K(+) (BK) channels are widely distributed throughout the nervous system, where they regulate action potential duration and firing frequency, along with presynaptic neurotransmitter release. Our recent efforts to identify chaperones that target neuronal ion channels have revealed cysteine string protein (CSPα) as a key regulator of BK channel expression and current density. CSPα is a vesicle-associated protein and mutations in CSPα cause the hereditary neurodegenerative disorder, adult-onset autosomal dominant neuronal ceroid lipofuscinosis (ANCL). CSPα null mice show 2.5 fold higher BK channel expression compared to wild type mice, which is not seen with other neuronal channels (i.e. Ca(v)2.2, K(v)1.1 and K(v)1.2). Furthermore, mutations in either CSPα's J domain or cysteine string region markedly increase BK expression and current amplitude. We conclude that CSPα acts to regulate BK channel expression, and consequently CSPα-associated changes in BK activity may contribute to the pathogenesis of neurodegenerative disorders, such as ANCL
    corecore