51 research outputs found

    Toxicity of Nanomaterials-Physicochemical Effects

    No full text
    Nanomaterials involve the structures with at least one dimension of <100 nm. Recently, development in nanotechnology has led to the use of nanomaterials in many different fields. On the other hand, increasing use of nanomaterials has resulted in release of these materials to the environment. Therefore, before employing these materials in biological and living systems, they should be evaluated in terms of biocompatibility and distribution. Although the toxic effects of nanomaterials on living organisms, human health and the environment have been studied by some researchers, there are too much uncertainty regarding the effects and mechanisms of toxicity of nanomaterials. Therefore, understanding the toxicity effects of nanomaterials is highly desirable. Cellular uptake mechanisms and dispersion of nanomaterials in biological environments depend on their physicochemical properties. Therefore, knowledge of the unique characteristics of nanomaterials and the interactions of nanomaterials with biological systems, are important criteria for the safe use of nanomaterials. Properties of nanomaterials such as size, shape, aspect ratio, density, surface and structural defects and dissolving rate are the main causes of cytotoxicity and side effects of these materials in the body. Exposure to nanomaterials may cause a range of acute and chronic effects, including inflammation, exacerbation of asthma, metal fume fever, fibrosis, chronic inflammatory diseases and cancer. The present paper, reviews the previous studies aiming at the investigation of the relation between the physiochemical properties of nanomaterials and their toxicity

    An amplified sonodynamic therapy by a nanohybrid of titanium dioxide-gold-polyethylene glycol-curcumin: HeLa cancer cells treatment in 2D monolayer and 3D spheroid models

    No full text
    The utilization of ultrasound (US) to activate sonosensitizers for sonodynamic therapy (SDT) has faced challenges such as low activation efficiency and limited therapeutic outcomes, which have hampered its clinical applications. In this study, a nanohybrid of titanium dioxide-gold-polyethylene glycol-curcumin (TiO2-Au-PEG-Cur NH), as a novel US sensitizer, was synthesized, characterized, and applied for SDT of HeLa cancer cells in 2D monolayer model, and also a 3D spheroid model to bridge the gap between 2D cell culture and in vivo future studies. TiO2-Au-PEG-Cur NH contained TiO2 nanoparticles of 36 ± 11 nm in diameter, PEG-curcumin as a filler, and gold nanoparticles of 21 ± 7 nm in diameter with a high purity and a 35:17 of Ti:Au ratio (W/W), and it had a band gap of 2.4 eV, a zeta potential of –23 ± 7 mV, high stability upon US radiation cycles as well as one year storage. SDT of HeLa cells using TiO2-Au-PEG-Cur NH was investigated in the courses of cytotoxicity assessment in vitro, reactive oxygen species (ROS) generation capability, colony formation, cell migration, and the way to form spheroid. IC50 values of 122 and 38 μg mL−1 were obtained for TiO2-Au-PEG-Cur NH without and with US radiation, respectively. TiO2-Au-PEG-Cur NH not only exhibited an inherent capacity to generate ROS, but also represented an excellent therapeutic performance on the cancer cells through ROS generation and enhanced inhibitory effects on cell migration and spheroid formation

    An Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction

    No full text
    Background: Acute myocardial infarction (MI) accounts for one third of deaths. Cardiac troponin I (TnI) is a reliable biomarker of cardiac muscle tissue injury and is employed in the early diagnosis of MI. Objectives: In this study, a molecular method is introduced to early diagnosis of MI by rapid detection of TnI. Materials and Methods: The detection method was based on electrochemical aptasensing, being developed using different methods and evaluation steps. A gold electrode was used as a transducer to successful immobilize 76base aptamer to fabricate a TnI biosensor. Results: The designed aptasensor could detect TnI in a range of 0.03 to 2.0 ng mL-1 without using any label, pre-concentration or amplification steps. The limit of detection was attained as 10 pg mL-1 without significant trouble of interfering species. The TnI biosensor demonestrated a stable, regenerative and reproducible function. 89 human samples were used to evaluate the performance of the TnI biosensor, and it represented 100% and 81%, diagnostic sensitivity and specificity, respectively. Conclusions: This aptasensor may be used as an applicable tool in the future of early medical diagnosis of MI
    corecore