46 research outputs found

    Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data

    Get PDF
    The measurement of bisphenol-S (BPS) and its glucurono-conjugate (BPSG) in urine may be used for the biomonitoring of exposure in populations. However, this requires a thorough knowledge of their toxicokinetics. The time courses of BPS and BPSG were assessed in accessible biological matrices of orally and dermally exposed volunteers. Under the approval of the Research Ethics Committee of the University of Montreal, six volunteers were orally exposed to a BPS-d8 deuterated dose of 0.1 mg/kg body weight (bw). One month later, 1 mg/kg bw of BPS-d8 were applied on 40 cm2 of the forearm and then washed 6 h after application. Blood samples were taken prior to dosing and at fixed time periods over 48 h after treatment; complete urine voids were collected pre-exposure and at pre-established intervals over 72 h postdosing. Following oral exposure, the plasma concentration–time courses of BPS-d8 and BPSG-d8 over 48 h evolved in parallel, and showed a rapid appearance and elimination. Average peak values (±SD) were reached at 0.7 ± 0.1 and 1.1 ± 0.4 h postdosing and mean (±SD) apparent elimination half-lives (tÂœ) of 7.9 ± 1.1 and 9.3 ± 7.0 h were calculated from the terminal phase of BPS-d8 and BPSG-d8 in plasma, respectively. The fraction of BPS-d8 reaching the systemic circulation unchanged (i.e. bioavailability) was further estimated at 62 ± 5% on average (±SD) and the systemic plasma clearance at 0.57 ± 0.07 L/kg bw/h. Plasma concentration–time courses and urinary excretion rate profiles roughly evolved in parallel for both substances, as expected. The average percent (±SD) of the administered dose recovered in urine as BPS-d8 and BPSG-d8 over the 0–72 h period postdosing was 1.72 ± 1.3 and 54 ± 10%. Following dermal application, plasma levels were under the lower limit of quantification (LLOQ) at most time points. However, peak values were reached between 5 and 8 h depending on individuals, suggesting a slower absorption rate compared to oral exposure. Similarly, limited amounts of BPS-d8 and its conjugate were recovered in urine and peak excretion rates were reached between 5 and 11 h postdosing. The average percent (±SD) of the administered dose recovered in urine as BPS-d8 and BPSG-d8 was about 0.004 ± 0.003 and 0.09 ± 0.07%, respectively. This study provided greater precision on the kinetics of this contaminant in humans and, in particular, evidenced major differences between BPA and BPS kinetics with much higher systemic levels of active BPS than BPA, an observation explained by a higher oral bioavailability of BPS than BPA. These data should also be useful in developing a toxicokinetic model for a better interpretation of biomonitoring data

    UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity

    Get PDF
    Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed ÎČ-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development

    Carbonyl reductase 1 catalyzes 20ÎČ-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity

    Get PDF
    Carbonyl Reductase 1 (CBR1) is a ubiquitously expressed cytosolic enzyme important in exogenous drug metabolism but the physiological function of which is unknown. Here, we describe a role for CBR1 in metabolism of glucocorticoids. CBR1 catalyzes the NADPH-dependent production of 20 beta-dihydrocortisol (20 beta-DHF) from cortisol. CBR1 provides the major route of cortisol metabolism in horses and is up-regulated in adipose tissue in obesity in horses, humans and mice. We demonstrate that 20 beta-DHF is a weak endogenous agonist of the human glucocorticoid receptor (GR). Pharmacological inhibition of CBR1 in diet-induced obesity in mice results in more marked glucose intolerance with evidence for enhanced hepatic GR signaling. These findings suggest that CBR1 generating 20 beta-dihydrocortisol is a novel pathway modulating GR activation and providing enzymatic protection against excessive GR activation in obesity

    Evaluation and validation of an analytical approach for high-throughput metabolomic fingerprinting using direct introduction–high-resolution mass spectrometry: Applicability to classification of urine of scrapie-infected ewes

    Get PDF
    International audienceDirect injection-mass spectrometry can be used to perform high-throughput metabolomic fingerprinting. This work aims to evaluate a global analytical workflow in terms of sample preparation (urine sample dilution), high-resolution detection (quality of generated data based on criteria such as mass measurement accuracy and detection sensitivity) and data analysis using dedicated bioinformatics tools. Investigation was performed on a large number of biological samples collected from sheep infected or not with scrapie. Direct injection-mass spectrometry approach is usually affected by matrix effects, eventually hampering detection of some relevant biomarkers. Reference compounds were spiked in biological samples to help evaluate the quality of direct injection mass spectrometry data produced by Fourier Transform mass spectrometry. Despite the potential of high-resolution detection, some drawbacks still remain. The most critical is the presence of matrix effects, which could be minimized by optimizing the sample dilution factor. The data quality in terms of mass measurement accuracy and reproducible intensity was evaluated. Good repeatability was obtained for the chosen dilution factor (i.e., 2000). More than 150 analyses were performed in less than 16 hours using the optimized direct injection-mass spectrometry approach. Discrimination of different status of sheeps in relation to scrapie infection (i.e., scrapie-affected, preclinical scrapie or healthy) was obtained from the application of Shrinkage Discriminant Analysis to the direct injection-mass spectrometry data. The most relevant variables related to this discrimination were selected and annotated. This study demonstrated that the choice of appropriated dilution faction is indispensable for producing quality and informative direct injection-mass spectrometry data. Successful application of direct injection-mass spectrometry approach for high throughput analysis of a large number of biological samples constitutes the proof of the concept
    corecore