1,500 research outputs found
Sub-Riemannian Geometry and Time Optimal Control of Three Spin Systems: Quantum Gates and Coherence Transfer
Many coherence transfer experiments in Nuclear Magnetic Resonance
Spectroscopy, involving network of coupled spins, use temporary spin-decoupling
to produce desired effective Hamiltonians. In this paper, we show that
significant time can be saved in producing an effective Hamiltonian, if
spin-decoupling is avoided. We provide time optimal pulse sequences for
producing an important class of effective Hamiltonians in three spin networks.
These effective Hamiltonians are useful for coherence transfer experiments and
implementation of quantum logic gates in NMR quantum computing. It is
demonstrated that computing these time optimal pulse sequences can be reduced
to geometric problems that involve computing sub-Riemannian geodesics on
Homogeneous spaces
Triaxial deformation in 10Be
The triaxial deformation in Be is investigated using a microscopic
model. The states of two valence neutrons are classified
based on the molecular-orbit (MO) model, and the -orbit is introduced
about the axis connecting the two -clusters for the description of the
rotational bands. There appear two rotational bands comprised mainly of and , respectively, at low excitation energy, where the two
valence neutrons occupy or orbits. The
triaxiality and the -mixing are discussed in connection to the molecular
structure, particularly, to the spin-orbit splitting. The extent of the
triaxial deformation is evaluated in terms of the electro-magnetic transition
matrix elements (Davydov-Filippov model, Q-invariant model), and density
distribution in the intrinsic frame. The obtained values turned out to be
.Comment: 15 pages, latex, 3 figure
Effect of defects on thermal denaturation of DNA Oligomers
The effect of defects on the melting profile of short heterogeneous DNA
chains are calculated using the Peyrard-Bishop Hamiltonian. The on-site
potential on a defect site is represented by a potential which has only the
short-range repulsion and the flat part without well of the Morse potential.
The stacking energy between the two neigbouring pairs involving a defect site
is also modified. The results are found to be in good agreement with the
experiments.Comment: 11 pages including 5 postscript figure; To be appear in Phys. Rev.
Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X
We analyze the recently obtained new data on the partial cross sections and
parallel momentum distributions for transitions to ground as well as excited
states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C
gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup
components of the one-neutron removal cross sections have been calculated
within a finite range distorted wave Born approximation theory and an eikonal
model, respectively. The nuclear contributions dominate the partial cross
sections for the core excited states. By adding the nuclear and Coulomb cross
sections together, a reasonable agreement is obtained with the data for these
states. The shapes of the experimental parallel momentum distributions of the
core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C.
(Rapid communications
Evaluation of Onion Genotypes for Growth and Bulb Yield in Mid Hill of Nepal
Experiments were conducted at Horticulture Research Division (HRD), Khumaltar, Lalitpur; and Horticulture Research Station (HRS), Kimugaun, Dailekh in 2017/18 to evaluate the high yielding open pollinated genotypes of onion in mid hills of both locations. Five onion genotypes namely AVON-1016, AVON-1027, AVON-1028, AVON-1052, AVON-1074 and AVON-1103 received from Asian Vegetable Research and Development Centre were evaluated with local check variety and recommended variety Red Creole in both locations in randomized complete block design with 4 replications. The main objective of the experiment is to findout the high yielding open pollinated onion genotypes for mid hill condition.The pooled analysis of data over locations showed significant differences on plant height, neck diameter, bulb diameter, weight of bulbs and adjusted bulb yield per hectare. Introduced genotypes AVON 1027 (38.83 t/ha), AVON 1052 (31.97 t/ha) and AVON 1028 (31.48 t/ha) produced significantly higher yield than recommended and commercially cultivated check variety Red Creole (27.04 t/ha). Therefore the genotype AVON 1027 can be selected as the best genotype for growing in mid hills of Nepa
One-neutron removal reactions on neutron-rich psd-shell nuclei
A systematic study of high energy, one-neutron removal reactions on 23
neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The
longitudinal momentum distributions of the core fragments and corresponding
single-neutron removal cross sections are reported for reactions on a carbon
target. Extended Glauber model calculations, weighted by the spectroscopic
factors obtained from shell model calculations, are compared to the
experimental results. Conclusions are drawn regarding the use of such reactions
as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C,
19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C
is discussed.Comment: 11 pages + 2 figure
Evidence for transfer followed by breakup in 7Li + 65Cu
The observation of a large cross-section for the alpha + d channel compared
to breakup into the alpha + t channel from an exclusive measurement for the
7Li+65Cu system at 25 MeV is presented. A detailed analysis of the angular
distribution using coupled channels Born approximation calculations has
provided clear evidence that the observed alpha + d events arise from a two
step process, i.e. direct transfer to the 2.186 MeV (3+) resonance in the alpha
+ d continuum of 6Li followed by breakup, and are not due to final state
interaction effects.Comment: 12 pages, 3 figures, To be published in Phys. Letts.
Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV
Angular distribution measurements of H(Be,Be)H and
H(Be,B) reactions at ~4.5 MeV were performed to
extract the astrophysical factor using the asymptotic normalization
coefficient (ANC) method. For this purpose a pure, low emittance Be beam
was separated from the primary Li beam by a recoil mass spectrometer
operated in a novel mode. A beam stopper at 0 allowed the use of a
higher Be beam intensity. Measurement of the elastic scattering in the
entrance channel using kinematic coincidence, facilitated the determination of
the optical model parameters needed for the analysis of the transfer data. The
present measurement significantly reduces errors in the extracted
Be(p,) cross section using the ANC method. We get
~(0)~=~20.7~~2.4 eV~b.Comment: 15 pages including 3 eps figures, one figure removed and discussions
updated. Version to appear in Physical Review
- …
