106 research outputs found

    Mineralogical, geochemical, and isotopic characteristics of the ejecta from the 5 April 2003 paroxysm at Stromboli, Itlay: Inferences on the Preeruptive Magma Dynamics

    Get PDF
    The 5 April 2003 explosive eruption at Stromboli emplaced typical basaltic scoria, pumice, and lithic blocks. This paper reports a detailed set of mineralogical, geochemical, and isotopic data on the juvenile ejecta and fresh subvolcanic blocks, including micro-Sr isotope analyses and major and dissolved volatile element contents in olivine-hosted melt inclusions. The juvenile ejecta have compositions similar to those of their analogs from previous paroxysms; the 2003 pumice, however, does not contain stable high-MgO olivine, usually typical of large-scale paroxysms and has lower compatible element contents. Texture, composition, and Sr isotope disequilibrium of crystals in pumice indicate that most of them are inherited from the shallow crystal-rich magma and/or crystal mush. The most primitive magma is recorded as rare melt inclusion in olivine Fo85–86. It has a typical S/Cl (1.1) and a total volatile content of 3.1 wt % from which the total fluid pressure was evaluated ≥240 MPa. Hence, moderate pressure conditions can be envisaged for the mechanism triggering the April 2003 paroxysm. The subvolcanic blocks are shoshonitic basalts with 45–50 vol % of phenocrysts (plagioclase + clinopyroxene + olivine). The late-stage crystallization of the crystal-rich magma lead to the formation of Na-sanidine with plagioclase An60–25 + olivine Fo68–49 + Timagnetite ± apatite ± phlogopite ± ilmenite assemblage. Mineralogy, chemistry, and Sr–Nd isotopic signatures of the subvolcanic blocks indicate they represent the slowly cooled equivalents of batches of crystal-rich basaltic magma stored in the uppermost subvolcanic feeding system. Cooling might be facilitated by short breaks in the summit crater activity

    Rapid onset of mafic magmatism facilitated by volcanic edifice collapse

    Get PDF
    Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2&nbsp;gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre

    Get PDF
    Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen

    Landslide Susceptibility Maps in the Rock Slopes of the Ventotene Island (Latium, Italy)

    No full text

    Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy)

    No full text
    Two unusual, highly explosive flank eruptions succeeded on Mount Etna in July August 2001 and in October 2002 to January 2003, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich ( 4 wt %) basaltic magma that rose from 10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas’ evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6–4 km bsl, in agreement with seismic data and with the lack of preeruptive SO2 accumulation above the initial depth of sulphur exsolution ( 3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.PublishedB04203reserve
    • …
    corecore