1,238 research outputs found

    Altered Expression of Antimicrobial Peptides in the Upper Gastrointestinal Tract of Patients with Diabetes Mellitus

    Get PDF
    Antimicrobial peptides (AMP) are essential components of innate immunity with a broad range of antimicrobial activities against bacteria, viruses, and fungi. The aim of this study was to investigate AMP expression in the upper gastrointestinal tract in normal and pathological metabolic states in humans. Furthermore, we examined the correlation between vitamin D levels and AMP expression in the same cohort. Serum concentrations of 25-hydroxyvitamin D3 were measured, and mRNA expression of β-defensins HBD-1, -2, -3, -4, α-defensins HD-5 and -6 and cathelicidin in the upper gastrointestinal tract epithelia were determined by quantitative RT-PCR in 31 individuals (10 with type 2 diabetes, 10 with insulin resistance, and 11 healthy controls). The majority of the cohort showed low vitamin D concentrations, which were negatively correlated with mRNA expression levels of HBD-3 in corpus mucosa. HBD-1 and HBD-3 mRNA were expressed in corpus mucosa, with the former significantly decreased in patients with diabetes. Hence, we conclude that type 2 diabetes is associated with reduced AMP expression in the upper gastrointestinal tract, which might contribute towards epithelial barrier dysfunction and increased bacterial translocation in these patients

    Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning

    Full text link
    Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and facilitates faster design iteration cycles for designers and engineers. However, generic task-and-motion planning (TAMP) for long-horizon construction processes is beyond the capabilities of current approaches. In this paper, we develop a multi-agent TAMP framework for long horizon problems such as constructing a full-scale building. To this end we extend the Logic-Geometric Programming framework by sampling-based motion planning,a limited horizon approach, and a task-specific structural stability optimization that allow an effective decomposition of the task. We show that our framework is capable of constructing a large pavilion built from several hundred geometrically unique building elements from start to end autonomously

    Electrical and Thermal Transport at the Planckian Bound of Dissipation in the Hydrodynamic Electron Fluid of WP2

    Full text link
    Materials with strongly-correlated electrons exhibit interesting phenomena such as metal-insulator transitions and high-temperature superconductivity. In stark contrast to ordinary metals, electron transport in these materials is thought to resemble the flow of viscous fluids. Despite their differences, it is predicted that transport in both, conventional and correlated materials, is fundamentally limited by the uncertainty principle applied to energy dissipation. Here we discover hydrodynamic electron flow in the Weyl-semimetal tungsten phosphide (WP2). Using thermal and magneto-electric transport experiments, we observe the transition from a conventional metallic state, at higher temperatures, to a hydrodynamic electron fluid below 20 K. The hydrodynamic regime is characterized by a viscosity-induced dependence of the electrical resistivity on the square of the channel width, and by the observation of a strong violation of the Wiedemann-Franz law. From magneto-hydrodynamic experiments and complementary Hall measurements, the relaxation times for momentum and thermal energy dissipating processes are extracted. Following the uncertainty principle, both are limited by the Planckian bound of dissipation, independent of the underlying transport regime

    Fluvial organic carbon composition regulated by seasonal variability in lowland river migration and water discharge

    Get PDF
    Identifying drivers of seasonal variations in fluvial particulate organic carbon (POC) composition can aid sediment provenance and biogeochemical cycling studies. We evaluate seasonal changes in POC composition in the Río Bermejo, Argentina, a lowland river running ∼1,270 km without tributaries. Weekly POC concentration and isotopic composition from 2016 to 2018 show that during the wet season, increased lateral channel migration generates an influx of 13C-enriched and 14C-enriched floodplain-sourced material, overprinting the 13C-depleted and 14C-depleted headwater signature that is observed during the dry season. These findings demonstrate how channel morphodynamics can drive variability of POC composition in lowland rivers, and may modulate the composition of POC preserved in sedimentary archives

    Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort.

    Get PDF
    To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection

    Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens

    Get PDF
    Crop losses caused by pests and weeds have been estimated at 42% worldwide, with plant pathogens responsible for almost $10 billion worth of damage in the USA in 1994 alone. Elevated carbon dioxide [ECO2] and associated climate change have the potential to accelerate plant pathogen evolution, which may, in turn, affect virulence. Plant–pathogen interactions under increasing CO2 concentrations have the potential to disrupt both agricultural and natural systems severely, yet the lack of experimental data and the subsequent ability to predict future outcomes constitutes a fundamental knowledge gap. Furthermore, nothing is known about the mechanistic bases of increasing pathogen agressiveness. In the absence of information on crop species, it is shown here that plant pathogen (Erysiphe cichoracearum) aggressiveness is increased under ECO2, together with changes in the leaf epidermal characteristics of the model plant Arabidopsis thaliana L. Stomatal density, guard cell length, and trichome numbers on leaves developing post-infection are increased under ECO2 in direct contrast to non-infected responses. As many plant pathogens utilize epidermal features for successful infection, these responses provide a positive feedback mechanism facilitating an enhanced susceptibility of newly developed leaves to further pathogen attack. Furthermore, a screen of resistant and susceptible ecotypes suggest inherent differences in epidermal responses to ECO2

    Cyclebase.org—a comprehensive multi-organism online database of cell-cycle experiments

    Get PDF
    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are normalized to a common timescale to enable inspection of the combined experimental evidence. Furthermore, state-of-the-art computational analyses provide key information on both individual experiments and combined datasets such as whether or not a gene is periodically expressed and, if so, the time of peak expression. Cyclebase is available at http://www.cyclebase.org

    NMR Study of Disordered Inclusions in the Quenched Solid Helium

    Full text link
    Phase structure of rapidly quenched solid helium samples is studied by the NMR technique. The pulse NMR method is used for measurements of spin-lattice T1T_1 and spin-spin T2T_2 relaxation times and spin diffusion coefficient DD for all coexisting phases. It was found that quenched samples are two-phase systems consisting of the hcp matrix and some inclusions which are characterized by DD and T2T_2 values close to those in liquid phase. Such liquid-like inclusions undergo a spontaneous transition to a new state with anomalously short T2T_2 times. It is found that inclusions observed in both the states disappear on careful annealing near the melting curve. It is assumed that the liquid-like inclusions transform into a new state - a glass or a crystal with a large number of dislocations. These disordered inclusions may be responsible for the anomalous phenomena observed in supersolid region.Comment: 10 pages, 3 figure

    Mobile Consumer Behavior in Fashion m-Retail: An Eye Tracking Study to Understand Gender Differences

    Get PDF
    © 2020 ACM. With exponential adoption of mobile devices, consumers increasingly use them for shopping. There is a need to understand the gender differences in mobile consumer behavior. This study used mobile eye tracking technology and mixed-method approach to analyze and compare how male and female mobile fashion consumers browse and shop on smartphones. Mobile eye tracking glasses recorded fashion consumers' shopping experiences using smartphones for browsing and shopping on the actual fashion retailer's website. 14 participants successfully completed this study, half of them were males and half females. Two different data analysis approaches were employed, namely a novel framework of the shopping journey, and semantic gaze mapping with 31 Areas of Interest (AOI) representing the elements of the shopping journey. The results showed that male and female users exhibited significantly different behavior patterns, which have implications for mobile website design and fashion m-retail. The shopping journey map framework proves useful for further application in market research
    corecore