1,058 research outputs found
Recommended from our members
Kinetics of CO<inf>2</inf>-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho
The dissolution of silicate minerals by CO2–rich fluids and the subsequent precipitation of CO2 as carbonate minerals represent a means of permanently storing anthropogenic CO2 waste products in a solid and secure form. Modelling the progression of these reactions is hindered by our poor understanding of the rates of mineral dissolution-precipitation reactions and mineral surface properties in natural systems. This study evaluates the chemical evolution of groundwater flowing through a basalt aquifer, which forms part of the leaking CO2-charged system of the Blackfoot Volcanic Field in south-eastern Idaho, USA. Reaction progress is modelled using changes in groundwater chemistry by inverse mass balance techniques. The CO2-promoted fluid-mineral reactions include the dissolution of primary plagioclase, orthoclase, pyroxene and gypsum which is balanced by the precipitation of secondary albite, calcite, zeolite, kaolinite and silica. Mineral mole transfers and groundwater flow rates estimated from hydraulic head data are used to determine the kinetics of plagioclase and orthoclase feldspar dissolution. Plagioclase surface area measurements were determined using the evolution of the U-series isotope ratios in the groundwater and are compared to published surface area measurements. Calculated rates of dissolution for plagioclase range from 2.4 x 10-12 to 4.6 x 10-16 mol/m2/s and orthoclase from 2.0 x 10-13 to 6.8 x 10-16 mol/m2/s respectively. These feldspar reaction rates, correlate with the degree of mineral-fluid disequilibrium and are similar to the dissolution rates for these mineral measured in other natural CO2-charged groundwater systems.Carbon research at Cambridge is supported by Natural Environment Research Council grant NE/F004699/1, part of the UK CRIUS (Carbon Research Into Underground Storage) consortium and DECC through the ‘£20 million’ competition. Niko Kampman acknowledges financial support from Shell Global Solutions International.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.apgeochem.2015.06.01
The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation
We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains
Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae
OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial
Management of Septated Malignant Pleural Effusions
Purpose of Review: We review recent studies of patients with septated malignant pleural effusions, to understand what the clinical implications for patients are and what evidence-based methods should be used to manage these effusions. Recent Findings: Fibrinolytics improve effusion size assessed radiologically in patients with a chest drain inserted for septated malignant pleural effusions but this does not translate into an improvement in breathlessness relief or pleurodesis success. Fibrinolytics have also been used in patients with septated effusions associated with indwelling pleural catheters, but dyspnoea relief has not been assessed in this population. Patients with septated effusions or extensive adhesions appear to have a worse prognosis. Summary: Patients with septated malignant pleural effusions have a poor prognosis and do not gain clinical benefit from fibrinolytics via chest drain. The role of fibrinolytics for septated effusions associated with indwelling pleural catheters requires further study
Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis
The aim of this study was to investigate isolates of Actinobacillus pleuropneumoniae previously designated serologically either as NT or as ‘K2:07’, which did not produce serovar-specific amplicons in PCR assays.
We used whole genome sequencing to identify the capsule (CPS) loci of six previously designated biovar 1 non-typable (NT) and two biovar 1 ‘K2:O7’ isolates of A. pleuropneumoniae from Denmark, as well as a recent biovar 2 NT isolate from Canada. All of the NT isolates have the same six-gene type I CPS locus, sharing common cpsABC genes with serovars 2, 3, 6, 7, 8, 9, 11 and 13. The two ‘K2:O7’ isolates contain a unique three-gene type II CPS locus, having a cpsA gene similar to that of serovars 1, 4, 12, 14 and 15. The previously NT isolates share the same O-antigen genes, found between erpA and rpsU, as serovars 3, 6, 8, and 15. Whereas the ‘K2:O7’ isolates, have the same O-antigen genes as serovar 7, which likely contributed to their previous mis-identification. All of the NT and ‘K2:O7’ isolates have only the genes required for production of ApxII (apxIICA structural genes, and apxIBD export genes).
Rabbit polyclonal antisera raised against representative isolates with these new CPS loci demonstrated distinct reactivity compared to the 16 known serovars. The serological and genomic results indicate that the isolates constitute new serovars 17 (previously NT) and 18 (previously ‘K2:O7’). Primers designed for amplification of specific serovar 17 and 18 sequences for molecular diagnostics will facilitate epidemiological tracking of these two new serovars of A. pleuropneumoniae
A supramolecular assembly mediates lentiviral DNA integration
Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo–electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors
Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks
Anthropogenic CO2 storage, where CO2 is injected into saline geological resevoirs, relies on an impermeable caprock to seal in the CO2, but caprock reaction rates to CO2 acid brines are unclear
- …
