379 research outputs found

    Abundance Anomalies in the X-ray Spectra of the Planetary Nebulae NGC 7027 and BD +30 363

    Get PDF
    We revisit Chandra observations of the planetary nebulae NGC 7027 and BD +30 3639 in order to address the question of abundance anomalies in the X-ray emitting gas. Enhanced abundances relative to solar of magnesium (Mg) for NGC 7027 and neon (Ne) for BD +30 3639 are required to fit their X-ray spectra, whereas observations at optical and infrared wavelengths show depleted Mg and Ne in these systems. We attribute the enhancement of Mg in NGC 7027 in the X-ray, relative to the optical, to the depletion of Mg onto dust grains within the optical nebula. For BD +30 3639, we speculate that the highly enhanced Ne comes from a WD companion, which accreted a fraction of the wind blown by the asymptotic giant branch progenitor, and went through a nova-like outburst which enriched the X-ray emitting gas with Ne

    GCIRS16SW: a massive eclipsing binary in the Galactic Center

    Get PDF
    We report on the spectroscopic monitoring of GCIRS16SW, an Ofpe/WN9 star and LBV candidate in the central parsec of the Galaxy. SINFONI observations show strong daily spectroscopic changes in the K band. Radial velocities are derived from the HeI 2.112 um line complex and vary regularly with a period of 19.45 days, indicating that the star is most likely an eclipsing binary. Under various assumptions, we are able to derive a mass of ~ 50 Msun for each component.Comment: 4 pages, 4 figures, ApJ Letters accepte

    The unfriendly ISM in the radio galaxy 4C12.50 (PKS 1345+12)

    Full text link
    The radio source 4C12.50 has often been suggested to be a prime candidate for the link between ultraluminous infrared galaxies and young radio galaxies. A VLBI study of the neutral hydrogen in the nuclear regions of this object shows that most of the gas detected close to the systemic velocity is associated with an off-nuclear cloud (~50 to 100 pc from the radio core) with a column density of ~10^22 T_spin/100 K) cm^(-2) and an HI mass of a few times 10^5 to 10^6 M_sun. We consider a number of possibilities to explain the results. In particular, we discus the possibility that this cloud indicates the presence of a rich and clumpy interstellar medium in the centre, likely left over from the merger that triggered the activity and that this medium influences the growth of the radio source. The location of the cloud -- at the edge of the northern radio jet/lobe -- suggests that the radio jet might be interacting with a gas cloud. This interaction could be responsible for bending the young radio jet. The velocity profile of the gas is relatively broad (~150$ km/s) and we interpret this as kinematical evidence for interaction of the radio plasma with the cloud. We also consider the model where the cloud is part of a broader circumnuclear structure. Only a limited region of this structure would have sufficient background radio brightness and large enough column depth in neutral gas to obtain detectable HI absorption against the counterjet. The VLBI study of the neutral hydrogen in 4C12.50 suggests that HI detected near the systemic velocity (as it is often the case in radio galaxies) may not necessarily be connected with a circumnuclear disk or torus (as is very often assumed) but instead could be a tracer of the large-scale medium that surrounds the active nucleus and that may influence the growth of the young radio source.Comment: 7 pages, 2 figures. Accepted for publication in A&

    Interior structure models of GJ 436b

    Full text link
    GJ 436b is the first extrasolar planet discovered that resembles Neptune in mass and radius. The particularly interesting property of Neptune-sized planets is that their mass Mp and radius Rp are close to theoretical M-R relations of water planets. Given Mp, Rp, and equilibrium temperature, however, various internal compositions are possible. A broad set of interior structure models is presented here that illustrates the dependence of internal composition and possible phases of water occurring in presumably water-rich planets, such as GJ 436b on the uncertainty in atmospheric temperature profile and mean density. We show how the set of solutions can be narrowed down if theoretical constraints from formation and model atmospheres are applied or potentially observational constraints for the atmospheric metallicity Z1 and the tidal Love number k2. We model the interior by assuming either three layers (hydrogen-helium envelope, water layer, rock core) or two layers (H/He/H2O envelope, rocky core). For water, we use the equation of state H2O-REOS based on FT-DFT-MD simulations. Some admixture of H/He appears mandatory for explaining the measured radius. For the warmest considered models, the H/He mass fraction can reduce to 10^-3, still extending over ~0.7 REarth. If water occurs, it will be essentially in the plasma phase or in the superionic phase, but not in an ice phase. Metal-free envelope models have 0.02<k2<0.2, and the core mass cannot be determined from a measurement of k2. In contrast, models with 0.3<k2<0.82 require high metallicities Z1<0.89 in the outer envelope. The uncertainty in core mass decreases to 0.4 Mp, if k2>0.3, and further to 0.2 Mp, if k2>0.5, and core mass and Z1 become sensitive functions of k2. To further narrow the set of solutions, a proper treatment of the atmosphere and the evolution is necessary.Comment: 9 pages, accepted to A&

    A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    Get PDF
    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. Whatever the application, the goal is always to achieve the best performance with the simplest and most economically attractive process, without forgetting the sustainability issues. The purpose of this study is to establish the conditions to obtain by a simple method a cotton material with comfort, self-cleaning properties and antimicrobial activity. For that, microcapsules of phase change materials (PCMs) and TiO2 nanoparticles (NP) were applied conjugated and resulting fabrics were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy with X-ray microanalysis (SEM/EDS). The self-cleaning properties of treated fabrics were also analyzed based on the photocatalytic ability of coated fabrics capability to decomposition of methyl orange (MO) under solar simulator irradiation [1] [1]and assessment of degradation of coffee, red wine and curry stains [2]. The comfort properties were assessed according DSC and Alambeta analysis. Moreover, incorporating TiO2 NP in the finishing formulation also was assessment the bacterial inhibition on the treated fabrics.CNPq-Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil / National Council of Scientific and Technological Development – Brazil) for the doctoral scholarship (233550/2014-3). Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136 and Strategic Funding UID/Multi/04423/2013 by FCT and European Regional Development Fund (ERDF), in the framework of the programme PT2020.info:eu-repo/semantics/publishedVersio

    The Centurion 18 telescope of the Wise Observatory

    Full text link
    We describe the second telescope of the Wise Observatory, a 0.46-m Centurion 18 (C18) installed in 2005, which enhances significantly the observing possibilities. The telescope operates from a small dome and is equipped with a large-format CCD camera. In the last two years this telescope was intensively used in a variety of monitoring projects. The operation of the C18 is now automatic, requiring only start-up at the beginning of a night and close-down at dawn. The observations are mostly performed remotely from the Tel Aviv campus or even from the observer's home. The entire facility was erected for a component cost of about 70k$ and a labor investment of a total of one man-year. We describe three types of projects undertaken with this new facility: the measurement of asteroid light variability with the purpose of determining physical parameters and binarity, the following-up of transiting extrasolar planets, and the study of AGN variability. The successful implementation of the C18 demonstrates the viability of small telescopes in an age of huge light-collectors, provided the operation of such facilities is very efficient.Comment: 16 pages, 13 figures, some figures quality was degraded, accepted for publication in Astrophysics and Space Scienc

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    The nuclear star cluster of the Milky Way

    Get PDF
    The nuclear star cluster of the Milky Way is a unique target in the Universe. Contrary to extragalactic nuclear star clusters, using current technology it can be resolved into tens of thousands of individual stars. This allows us to study in detail its spatial and velocity structure as well as the different stellar populations that make up the cluster. Moreover, the Milky Way is one of the very few cases where we have firm evidence for the co-existence of a nuclear star cluster with a central supermassive black hole, Sagittarius A*. The number density of stars in the Galactic center nuclear star cluster can be well described, at distances 1\gtrsim1 pc from Sagittarius A*, by a power-law of the form ρ(r)rγ\rho(r)\propto r^{-\gamma} with an index of γ1.8\gamma\approx1.8. In the central parsec the index of the power-law becomes much flatter and decreases to γ1.2\gamma\approx1.2. We present proper motions for more than 6000 stars within 1 pc in projection from the central black hole. The cluster appears isotropic at projected distances 0.5\gtrsim0.5 pc from Sagittarius A*. Outside of 0.5 pc and out to 1.0 pc the velocity dispersion appears to stay constant. A robust result of our Jeans modeling of the data is the required presence of 0.52.0×106M0.5-2.0\times10^{6} M_{\odot} of extended (stellar) mass in the central parsec of the Galaxy.Comment: To appear in the proceedings of "The Universe under the Microscope - Astrophysics at High Angular Resolution", Journal of Physics:Conference Series (IOP; http://www.iop.org/EJ/conf) This version has been slightly modified (e.g. double-log plot in right hand panel of Figure 5

    A homogeneous spectroscopic analysis of host stars of transiting planets

    Full text link
    The analysis of transiting extra-solar planets provides an enormous amount of information about the formation and evolution of planetary systems. A precise knowledge of the host stars is necessary to derive the planetary properties accurately. The properties of the host stars, especially their chemical composition, are also of interest in their own right. Information about planet formation is inferred by, among others, correlations between different parameters such as the orbital period and the metallicity of the host stars. The stellar properties studied should be derived as homogeneously as possible. The present work provides new, uniformly derived parameters for 13 host stars of transiting planets. Effective temperature, surface gravity, microturbulence parameter, and iron abundance were derived from spectra of both high signal-to-noise ratio and high resolution by assuming iron excitation and ionization equilibria. For some stars, the new parameters differ from previous determinations, which is indicative of changes in the planetary radii. A systematic offset in the abundance scale with respect to previous assessments is found for the TrES and HAT objects. Our abundance measurements are remarkably robust in terms of the uncertainties in surface gravities. The iron abundances measured in the present work are supplemented by all previous determinations using the same analysis technique. The distribution of iron abundance then agrees well with the known metal-rich distribution of planet host stars. To facilitate future studies, the spectroscopic results of the current work are supplemented by the findings for other host stars of transiting planets, for a total dataset of 50 objects.Comment: accepted for publication in A&A, 7 pages, 6 figure
    corecore