155 research outputs found

    Committed Retreat of Smith, Pope, and Kohler Glaciers Over the Next 30 Years Inferred by Transient Model Calibration

    Get PDF
    A glacial flow model of Smith, Pope and Kohler Glaciers is calibrated by means of control methods against time varying, annually resolved observations of ice height and velocities, covering the period 2002 to 2011. The inversion - termed "transient calibration" - produces an optimal set of time-mean, spatially varying parameters together with a time-evolving state that accounts for the transient nature of observations and the model dynamics. Serving as an optimal initial condition, the estimated state for 2011 is used, with no additional forcing, for predicting grounded ice volume loss and grounding line retreat over the ensuing 30 years. The transiently calibrated model predicts a near-steady loss of grounded ice volume of approximately 21 km(3) a(-1) over this period, as well as loss of 33 km(2) a(-1) grounded area. We contrast this prediction with one obtained following a commonly used "snapshot" or steady-state inversion, which does not consider time dependence and assumes all observations to be contemporaneous. Transient calibration is shown to achieve a better fit with observations of thinning and grounding line retreat histories, and yields a quantitatively different projection with respect to ice volume loss and ungrounding. Sensitivity studies suggest large near-future levels of unforced, i.e., committed sea level contribution from these ice streams under reasonable assumptions regarding uncertainties of the unknown parameters.NERC NE/M003590/1DOE SC0008060NASA NNX14AJ51GComputational Science, Engineering, and Mathematic

    Dynamic jamming of iceberg-choked fjords

    Get PDF
    We investigate the dynamics of ice mélange by analyzing rapid motion recorded by a time-lapse camera and terrestrial radar during several calving events that occurred at Jakobshavn Isbræ, Greenland. During calving events (1) the kinetic energy of the ice mélange is 2 orders of magnitude smaller than the total energy released during the events, (2) a jamming front propagates through the ice mélange at a rate that is an order of magnitude faster than the motion of individual icebergs, (3) the ice mélange undergoes initial compaction followed by slow relaxation and extension, and (4) motion of the ice mélange gradually decays before coming to an abrupt halt. These observations indicate that the ice mélange experiences widespread jamming during calving events and is always close to being in a jammed state during periods of terminus quiescence. We therefore suspect that local jamming influences longer timescale ice mélange dynamics and stress transmission

    A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth

    Get PDF
    We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many “context-specific” regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a “lineage-specific” cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies.Massachusetts Institute of Technology. Department of Biology (Training Grant)National Cancer Institute (U.S.). Integrative Cancer Biology Program (U54-CA112967-06)National Institutes of Health (U.S.) (RO1-CA128803-05

    Ice-stream stability on a reverse bed slope

    Get PDF
    Marine-based ice streams whose beds deepen inland are thought to be inherently unstable. This instability is of particular concern because significant portions of the marine-based West Antarctic and Greenland ice sheets are losing mass and their retreat could contribute significantly to future sea-level rise. However, the present understanding of ice-stream stability is limited by observational records that are too short to resolve multi-decadal to millennial-scale behaviour or to validate numerical models8. Here we present a dynamic numerical simulation of Antarctic ice-stream retreat since the Last Glacial Maximum (LGM), constrained by geophysical data, whose behaviour is consistent with the geomorphological record. We find that retreat of Marguerite Bay Ice Stream following the LGM was highly nonlinear and was interrupted by stabilizations on a reverse-sloping bed, where theory predicts rapid unstable retreat. We demonstrate that these transient stabilizations were caused by enhanced lateral drag as the ice stream narrowed. We conclude that, as well as bed topography, ice-stream width and long-term retreat history are crucial for understanding decadal- to centennial-scale ice-stream behaviour and marine ice-sheet vulnerability

    Reframing assessment research: through a practice perspective

    Get PDF
    Assessment as a field of investigation has been influenced by a limited number of perspectives. These have focused assessment research in particular ways that have emphasised measurement, or student learning or institutional policies. The aim of this paper is to view the phenomenon of assessment from a practice perspective drawing upon ideas from practice theory. Such a view places assessment practices as central. This perspective is illustrated using data from an empirical study of assessment decision-making and uses as an exemplar the identified practice of ‘bringing a new assessment task into being’. It is suggested that a practice perspective can position assessment as integral to curriculum practices and end separations of assessment from teaching and learning. It enables research on assessment to de-centre measurement and take account of the wider range of people, phenomena and things that constitute it

    Greenland ice sheet annual motion insensitive to spatial variations in subglacial hydraulic structure

    Get PDF
    We present ice velocities observed with global positioning systems and TerraSAR-X/TanDEM-Xin a land-terminating region of the southwest Greenland ice sheet (GrIS) during the melt year 2012–2013, toexamine the spatial pattern of seasonal and annual ice motion. We find that while spatial variability in theconfiguration of the subglacial drainage system controls ice motion at short timescales, this configurationhas negligible impact on the spatial pattern of the proportion of annual motion which occurs duringsummer. While absolute annual velocities vary substantially, the proportional contribution of summermotion to annual motion does not. These observations suggest that in land-terminating margins of the GrIS,subglacial hydrology does not significantly influence spatial variations in net summer speedup.Furthermore, our findings imply that not every feature of the subglacial drainage system needs to beresolved in ice sheet models

    Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry

    Get PDF
    Mass changes of the Greenland Ice Sheet may be estimated by the input–output method (IOM), satellite gravimetry, or via surface elevation change rates (dH/dt). Whereas the first two have been shown to agree well in reconstructing ice-sheet wide mass changes over the last decade, there are few decadal estimates from satellite altimetry and none that provide a time-evolving trend that can be readily compared with the other methods. Here, we interpolate radar and laser altimetry data between 1995 and 2009 in both space and time to reconstruct the evolving volume changes. A firn densification model forced by the output of a regional climate model is used to convert volume to mass. We consider and investigate the potential sources of error in our reconstruction of mass trends, including geophysical biases in the altimetry, and the resulting mass change rates are compared to other published estimates. We find that mass changes are dominated by surface mass balance (SMB) until about 2001, when mass loss rapidly accelerates. The onset of this acceleration is somewhat later, and less gradual, compared to the IOM. Our time-averaged mass changes agree well with recently published estimates based on gravimetry, IOM, laser altimetry, and with radar altimetry when merged with airborne data over outlet glaciers. We demonstrate that, with appropriate treatment, satellite radar altimetry can provide reliable estimates of mass trends for the Greenland Ice Sheet. With the inclusion of data from CryoSat-2, this provides the possibility of producing a continuous time series of regional mass trends from 1992 onward
    corecore