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Marine-based ice streams whose beds deepen inland are thought to be inherently unstable
1-3

. 

This instability is of particular concern because significant portions of the West Antarctic and 

Greenland ice sheets are marine-based and the resulting mass loss could contribute 

significantly to future sea-level rise
4-7

. However, the current understanding of ice-stream 

stability is limited by observational records that are too short to resolve multi-decadal to 

millennial-scale behaviour and validate numerical models
8
. Here we present a dynamic 

numerical simulation of Antarctic ice-stream retreat since the Last Glacial Maximum that, 

combined with bathymetric and marine geophysical mapping data, is consistent with the 

geomorphological record of palaeo-ice-stream retreat. We find that retreat of Marguerite Bay 

Ice Stream following the Last Glacial Maximum was highly non-linear and was interrupted 

by stabilisations on a reverse-sloping bed where rapid unstable retreat is expected from 

theoretical considerations. We demonstrate that these transient stabilisations were caused by 

enhanced lateral drag as the ice stream narrowed. We conclude that - in addition to bed 

topography - ice-stream width and long-term retreat history are crucial for understanding 

decadal- to centennial-scale ice-stream behaviour and ice sheet vulnerability. 

Ice streams are fast-flowing arteries of ice sheets that dominate ice discharge into the oceans, 



impacting directly upon sea level. Many ice streams possess beds that are below sea level and 

typically deepen inland on a reverse-slope
9
. Theory suggests that ice discharge increases rapidly 

with water depth
3
, and in the absence of lateral-drag induced buttressing from a floating ice shelf, 

grounding lines (marking the transition from grounded to floating ice) on reverse-bed slopes may be 

unstable
1-2

. Bed topography is therefore cited as a strong control on ice-stream retreat rate
3,10

 and 

modern satellite observations of rapid ice-stream thinning and recession appear consistent with this 

theory
4-6

. However, with just two decades of data, these records are too short to identify the longer-

term centennial to millennial-scale trends crucial for constraining future sea-level projections. 

Major uncertainties in predictions of ice-sheet vulnerability
11

 relate to limitations in understanding 

processes controlling grounding-line motion and, importantly, to deficiencies in grounding-line 

treatment in ice-sheet models
12

. In recent years, significant advances in model development have 

been made
3,12-17

, but tests have only been applied to simplified bed geometries or to steady-state 

conditions and lack validation against data over timescales longer than a few decades. We aim to 

understand the long-term controls and stability of marine ice streams and, for the first time, 

integrate a fully dynamic ice-stream model with the detailed geomorphological record of palaeo-

ice-stream retreat imprinted on the sea-floor of Marguerite Bay, western Antarctic Peninsula (Fig. 

1).  

High-resolution mapping from swath bathymetry and analysis of subglacial landforms and 

sediments
18-21

 (Supplementary Information; Fig. 1) identify the extent and evolution of the 

Marguerite Bay Ice Stream (MBIS) spanning several millennia following the Last Glacial 

Maximum (LGM). After 14 kyr the grounding line retreated rapidly along an overdeepened trough 

with a reverse-sloping bed from its LGM position at the continental shelf edge
20

. However, within 

this rapid retreat, short-term grounding-line stability is recorded by a series of eight major wedge-

shaped sedimentary landforms (grounding-zone wedges: GZWs)
18-20,22

. This evidence for temporary 

stability on reversed beds challenges understanding of the controls on grounding-line behaviour. 

Indeed, palaeo-ice-stream retreat patterns are regionally inconsistent
20,23

 indicating that although 



climate and ocean forcing are important, local controls such as basin geometry may modulate ice-

stream retreat. We test this hypothesis using a time-dependent numerical ice-flow model. 

The model
15,24

 (Supplementary Information) considers variations in both along-flow bed geometry 

and ice-stream width, which are independently prescribed by marine geophysical observations. It 

includes resistive stresses from the bed and lateral margins, the transfer of stresses in up- and down-

stream directions, a flotation criterion for calving and, crucially, a robust treatment of dynamic 

grounding-line behaviour which relies on a moving spatial grid. In order to assess ice-stream 

stability in the most unstable case, and because calving cannot be adequately constrained, the model 

has no ice shelf in the current treatment. A geophysically consistent steady-state LGM configuration 

extends to the continental shelf edge and provides the initial geometry (Supplementary Information; 

Supplementary Fig. S1) for a series of retreat experiments forced by simple sea-level and climate 

trends. Water depth (-100 to 0 m a.s.l.) and ice temperature (-20 to -15 °C) are increased linearly 

over an 8 kyr period to represent average trends during deglaciation. The imposition of this linear 

external forcing allows us to identify and understand the potential internal mechanisms controlling 

ice-stream retreat (it is not our intention to reproduce the precise chronology).  

In reference experiment A (Fig. 2; Supplementary Video 1), linear external forcing results in highly 

non-linear stepped retreat of the grounding line across the outer and mid-shelf with several distinct 

phases of slow-down with retreat rates of only a few m yr
-1

.  Once the grounding line retreats from 

the continental shelf break (triggered by the prescribed water-depth increase), the sensitivity of ice 

discharge to water depth modulates the retreat pattern, partly explaining the contrasting non-linear 

response to linear forcing. For example, several retreat-rate slow-downs are consistent with the 

location of significant topographic highs, indicating the importance of bed morphology in defining 

'pinning points' (e.g. at 500 km; Fig. 2). However, in the reverse-sloping portion of the bed and, 

significantly, in the absence of topographic highs, several slow-downs also occur. Moreover, the 

simulated stabilisations are broadly consistent with previously mapped GZW positions (Fig. 2). 



These short-term changes in retreat-rate occur adjacent to GZWs 1, 2, 3, 6, 7 and 8 and prolonged 

grounding-line stability is modelled between GZWs 4 and 5 where the reverse slope steepens into 

the overdeepened portion of Marguerite Trough. Further sensitivity experiments that accelerate sea-

level rise and temperature increases confirm that the spatial pattern of retreat is not controlled by 

external forcing because the locations of grounding-line stability remain fixed with only the timing 

of the retreat phases changing.  

Importantly, bed slope alone cannot explain the temporary stabilisations identified by the modelling 

and geomorphological data, indicating that other factors dominate over water depth. In particular, 

GZWs and retreat slow-downs coincide spatially with narrowing of the trough, implying that 

variations in ice-stream width are a potentially important control (Fig. 1). It has been suggested that 

width variations may alter retreat rates in tidewater glaciers confined to fjords
25

 but this has never 

been dynamically quantified on an ice-stream scale or over periods longer than a decade. To 

quantify the relative importance of the bed slope and width controls on ice-stream retreat behaviour 

we perform a series of experiments in which bed elevation and trough width are systematically 

modified.  

 

Modelling experiment B is identical to A but imposes a horizontal bed over the outer 180 km of the 

continental shelf (Fig. 3). Again, simulated retreat behaviour is highly non-linear, but the grounding 

line experiences only two major stabilisations on the outer shelf (at GZW 2 and between GZWs 4 

and 5).  This non-linear response is surprising given the flat bed and linear forcing, but we note that 

these slow-downs again coincide with narrowing of the ice-stream trough (Fig. 3).  

Experiment C combines the flat bed of experiment B with a straightening of the ice stream trough 

width over the outer 170 km of the continental shelf (Fig. 3). Nearly constant retreat rates of ca. 200 

m yr
-1

 are obtained across the entire outer shelf, a pattern that is markedly different to the previous 



experiments and to the geomorphological evidence.  

Model experiment D further tests the importance of width by applying a linear reverse-slope over 

the outer 180 km of the bed (Fig. 3). Although this induces rapid retreat over most of the outer shelf, 

a significant slow-down in retreat lasting ca. 50 years is nonetheless modelled between GZWs 4 and 

6. This corresponds to the area of most significant trough narrowing (Fig. 3), demonstrating that 

unstable retreat associated with reverse beds can be temporarily overcome by constrictions in 

trough width.  

These sensitivity experiments reveal that in addition to water depth, variations in ice-stream trough 

width play a fundamental role in controlling non-linear retreat behaviour. We explain the width-

controlled grounding-line stabilisation effect via two mechanisms. Firstly, lateral resistance from the 

sides of the ice stream increases as its width narrows
26 

(Supplementary Figs. S2-S3), thereby 

reducing the ice flux required to maintain a stable grounding line. This is particularly effective 

when the bed provides limited resistance, for example in the proximity of the grounding line. 

Lateral shear stress is consistently 50% higher over the narrow zone of GZWs 3-5 than in adjacent 

areas (Supplementary Figs. S4-S5) and evolves only marginally as the grounding-line retreats 

through this region. In contrast, basal shear stresses are significantly lower in this area and drop 

further as driving stresses are reduced and the ice stream thins and retreats. The enhanced zone of 

lateral shear stress is not present in constant-width Experiment C (Supplementary Figs. S2-S3) and 

thus stabilisations do not occur. Secondly, the principle of mass conservation requires ice-sheet 

thickening and consequent surface steepening where ice streams narrow which, for a given rate of 

surface thinning or sea-level change, leads to reduced retreat rates. The steeper surface enhances 

driving stress and thereby basal stress as suggested for tidewater systems
25

 but, in our models, the 

reduction in basal stress during retreat (Supplementary Fig. S2) is a response to evolving surface 

geometry rather than a first order control for grounding-line retreat.   

While the above two factors explain the mechanism for transient grounding-line stabilisation, the 



duration of stability is further dependent on the rate of inland-ice delivery to the grounding line. 

During stabilisations at width constrictions, thinning ceases near the grounding line but continues to 

propagate inland (Fig. 2) through direct longitudinal stress coupling and a time-transient feedback 

between accelerated ice flux and thinning
27

 (Supplementary Figs. S4-S5).  This upstream surface 

draw-down delivers extra ice to the grounding line which acts to slow the retreat and maintain 

grounding-line stability. When the inland ice storage is depleted, the next phase of rapid retreat is 

initiated.  The timescale of stabilisation is therefore sensitive to both the volume of upstream ice 

within the catchment area and the degree of dynamic coupling between the grounding line and the 

upstream basin. Because upstream propagation of thinning increases with ice speed
27-28

, the weak 

sedimentary bed beneath MBIS
19

 explains the tight coupling between grounding-line stability and 

the upstream basin. In the context of assessing ice-sheet mass balance it is worth noting that even 

during phases of limited retreat, when short-term measurements would suggest ice-stream stability, 

mass loss through the grounding line is in reality enhanced significantly by several tens of percent 

over decades to centuries via drawdown of ice from upstream (Experiment A; Supplementary Figs. 

S4-S5).  

This paper is the first to use a numerical ice-stream model to test and accurately replicate the 

‘known’ dynamic behaviour of a palaeo-ice stream, including temporary stabilisations over 

timescales longer than decades. Our dynamic simulations provide an improved understanding of the 

controls of marine ice-stream retreat and show that grounding-lines can be close to stable on a 

reverse slope. Over and above the influence of bed topography described in the marine ice-sheet 

instability hypothesis
1-3

, grounding-line stability is strongly controlled by subtle variations (e.g. 2-4 

km narrowing over 20 km distance) in the width of the ice-stream trough. This effect would be 

enhanced by additional buttressing in the presence of an ice shelf
2
 and would be strongest in basins 

that are relatively narrow
25

 and/or underlain by weak sediments, such as the rapidly thinning Pine 

Island Glacier in West Antarctica
29

. 



We also show that ice-stream retreat is expected to be highly non-linear and asynchronous to its 

forcing. This helps explain temporal and regional variations in the rate of mass loss being observed 

on present-day ice sheets
6
 and why retreat patterns are not regionally synchronous following the 

LGM
23

. The implications are that where modern grounding lines appear stable, mass loss may be 

continuing as part of a geometrically-controlled response to a longer-term phase of ice-stream 

retreat triggered decades to millennia earlier. Furthermore, the importance of width fundamentally 

questions the widely used assumption that future grounding-lines will retreat catastrophically across 

reverse-sloping beds
30

 and provides a revised perspective on marine ice-stream stability. The lateral 

control and the longer-term upstream response suggest that interpretations of current rapid changes 

and future projections of ice-sheet stability should carefully integrate specific long-term ice-stream 

history and details of 3-dimensional trough geometry. 

 

 

 

 

 

 

 

 

 

 



Figures: 

 

Figure 1: Topographic map and ice-stream landform assemblage in Marguerite Bay. a) Model 

domain and mapped geophysical retreat constraints. GZWs 1-8 indicate palaeo-grounding line 

stabilisations. White points show core locations
19,21,23

 with corrected and calibrated AMS
14

C 

minimum retreat ages in years before present ± 1σ error (bold are the most reliable dates
23

). b) 

Morphology of GZWs 4 and 5 with arrows indicating their downstream limits and the direction of 

streaming ice flow determined from superimposed mega-scale glacial lineations. c) Profiles 

showing scale of GZWs 4 and 5. Arrows indicate ice flow direction during separate depositional 

phases (red vs. orange).  

 



 

Figure 2: Modelled ice-stream retreat characteristics for reference Experiment A illustrating 

grounding-line stabilisations on a reverse bed slope. a) Coloured ice surface profiles shown at 5 

year intervals over an 8 kyr period with dotted black lines highlighting ice surfaces every 2 kyrs. 

The continuous black line shows the bed geometry. b)  Modelled grounding-line retreat rate (dashed 

red line) on a logarithmic scale. Orange triangles and grey dashed lines show mapped GZWs 1-8 

(Fig. 1). Where a large number of palaeo-ice stream surfaces intersect the bed in panel a, slower 

retreat is observed in panel b. 

 



 

Figure 3: Ice-stream retreat behaviour and imposed geometries for Experiments B-D. a-c) Coloured 

ice surface profiles at 2 year intervals with dashed black lines every 2 kyrs. Black lines plot 

imposed bed topographies, dashed red lines show grounding-line retreat rates. Orange triangles 

represent GZWs 1-8 (Fig. 1). d) Mapped trough width (grey shading) applied in Experiments A, B 

and D and imposed straightening of trough width (dark grey lines) in Experiment C. Note that 

retreat onset timings vary because modification of trough width or bed depth alters ice-flux patterns. 

This does not affect the major finding of controls on retreat. 
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Supplementary Information 

Model 

The numerical model calculates the time-dependent evolution of ice flow, ice surface and internal 

stresses along an 800 km flowband of the Marguerite Bay palaeo ice stream in the western Antarctic 

Peninsula. The physics incorporated within the model are described extensively elsewhere
1-3

  but 

their key features, in particular those relating to ensuring robust grounding-line behaviour, are 

outlined herein.  

Calculations of ice flow balance driving stress 
d  against basal stress 

b  and lateral shear stress
lat , 

and against longitudinal stress gradients 
x

xx




 in the direction of ice flow x  are given by: 

dlatb
xx

x





    (1) 

For an ice stream of thickness H , half-width W and a Weertman-type non-linear sliding relation
4
 

that takes into account effective pressure N , the stress balance above (eqn. (1)) results in an 

equation for depth and width averaged ice flow u  of the following form: 
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where the constants 
i  and g  refer to the density of ice (910 kg m

-3
) and gravitational acceleration, 

S  is the ice surface, A  the rate factor,   the basal sliding coefficient , n  and m  the exponents for 

ice flow and sliding relations (both taken as 3). The effective viscosity   is given by  

n

n

n

x

u
A





1

/1




   (3) 

and is solved iteratively. The evolution of the ice surface explicitly accounts for the along-flow 

variation in ice stream width as determined by the glacial trough shape by using 

 
x

uHW

W
a

t

H







 1
   (4) 



The model allows time-dependent inputs for surface accumulation a , sea level, and flow rate factor 

A . The latter describes the rheological softness of the ice at a particular temperature. The ice body 

is isothermal during individual timesteps, but its temperature can be varied through time. 

The model has a robust treatment of grounding-line behaviour
5
 that is consistent with a boundary 

layer theory
6
 which is important for avoiding errors imposed by model numerics

2
. Our treatment of 

grounding-line evolution relies on three components to allow the grounding line to move freely: 

1) Calving front: A floatation criterion is applied to calculate the location of the grounding line 

for each time step. All ice beyond this location is calved off and therefore the model does 

not incorporate an ice shelf or its buttressing effects. Ignoring an ice shelf takes into account 

the lack of a robust calving model for floating ice-shelf termini but also the highly limited 

observational constraints on palaeo ice-shelf extent. Ignoring buttressing from an ice shelf 

means the grounding line is in general less stable and thus our model-based sensitivity 

analysis considers the most unstable case.  

2) Moving spatial grid: The grounding line is tracked continuously using a stretched grid to 

allow precision without a dependency upon a specific grid resolution. This enables the 

model to more accurately evolve to changes at the ice-ocean boundary
2,5

. Initial grid 

resolution is ca. 900 m but reduces as the grounding line retreats inland.  

3) Ice-ocean boundary stresses: We assume the longitudinal stress at the ocean boundary is 

balanced by the difference in hydrostatic pressure between the ice and ocean water 
2,7

. This 

results in a boundary condition for the velocity gradient at the ice-stream front given by  

n

n

w
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where the density of the ocean water 
w is 1028 kg m

-3
. 

Model Constraints 

Topographic, Basal and Climatic Boundary Conditions 

Bed topography is constructed from 3 elevation datasets. High-resolution swath bathymetry data 

collected on the outer shelf were merged with a recent data 1 km resolution bathymetry compilation 

for the Bellingshausen Sea and Marguerite Bay
8
 to produce a seamless digital elevation model of 



Marguerite Trough and the area underneath the present-day George VI Ice Shelf. Above sea level in 

the upper reaches of the ice stream catchment the ALBMAP v1 dataset
9
 is used. The bed is re-

sampled to an initial resolution of 900 m and has the grounding-zone wedges (GZWs) removed to 

avoid pre-conditioning the grounding-line retreat pattern. The bed depth used in the model follows a 

centerline along the main portion of Marguerite Trough which then continues into George VI Sound 

and rises above sea level to the ice divide of central Palmer Land.  

The glacial landform signature of Marguerite Bay reveals the composite extent of the palaeo-ice 

stream and is therefore a key constraint and allowed us to define its shape. These data are used to 

define the domain and basal conditions for the numerical model. The width of the modelled ice 

stream is defined by tracing the shoulder of the overdeepened trough in a manner consistent with 

the lateral extent and axis of a range of elongated glacial landforms delineating past ice flow that 

were mapped across the continental shelf. Glacial features were systematically mapped from high-

resolution marine geophysical data of the continental shelf collected during James Clark Ross 

surveys JR59 
10

, JR71
11-12

 and JR157
13

 and Nathaniel B. Palmer survey NBP0201
14-16

. Features 

included 5037 mega-scale glacial lineations which are diagnostic of rapidly flowing ice
17

, 2761 

drumlins, 452 crag and tail features, and 4000 locations at which bedrock surfaces are streamlined 

and gouged
18

.  

Sediment cores recovered from the outer shelf of Marguerite Bay demonstrate a weak bed unable to 

support high shear strengths during the presence of the ice stream. Measured shear strengths of 

subglacial till cored on the mid- to outer continental shelf are often below 10 kPa on the outer 

continental shelf
19

. The basal friction parameter in the model is prescribed as slippiest where the 

bed is below sea level, and becomes stiffer as the bed rises above 0 m. Below sea level, modelled 

basal friction is linked to effective pressure so that basal shear stresses remain low in the model in 

order to correspond with measurements (Figure S1).  

Accumulation within this defined basin is from Arthern et al.
20

 via the ALBMAP Antarctic dataset
9
. 

Mapping and bathymetric data also indicate that when ice reached the outer shelf, the outer part of 

Marguerite Bay palaeo-ice stream was fed by a tributary which originated on the northern edge of 

Palmer Land. To account for this additional mass input we integrate the total yearly accumulation 

experienced from this tributary basin
9,20

. This mass is added as accumulation over a 160 km section 

of the modelled flowline in a pattern assuming more ice would have entered via the deeper central 

portion of the tributary than at its shallower edges. Sensitivity tests which alternatively distributed 

this mass along the entire length of the ice stream indicate that the pattern of grounding-line retreat 

is insensitive to the location at which the mass was injected.  



Constraints on Retreat Pattern 

Grounding zone wedges are used as the key independent constraint for testing the ability of the 

model to reproduce grounding line retreat patterns in Marguerite Bay. These sedimentary wedges 

form at the grounding line and are interpreted as representing a period of relatively stable ice stream 

position
21-22

 during which there is time to deposit significant volumes of sediment at the grounding 

line. Ten GZWs were identified in the outer and mid-shelf of Marguerite Bay using the swath 

bathymetry data although only 8 of these fall within the limits of the modelled ice stream extents. 

On the mid shelf, GZWs are mapped in the center of the trough and directly in the path of the 

modelled flowline. Towards the outer continental shelf, the GZWs are found on the lateral margins 

of the zone of fast-flowing ice as interpreted from the mega-scale glacial lineations. Importantly, 

and as indicated above, the topographic expression of the GZWs is removed from the bed 

topography and therefore does not pre-condition the modelled retreat pattern. Subtle shifts in ice-

flow direction across the GZWs indicate minor re-organisations of ice-flow during these temporary 

stabilisations (Figure 1b). Moreover, the presence of these overlying lineations also indicates that at 

the time of deposition, ice was flowing rapidly at the grounding zone. 

Experimental Design and Discussion 

Our experiments are designed to understand how any internal factors may control grounding-line 

retreat patterns. We do not aim to reproduce the timing of retreat observed in Marguerite Bay, but 

merely wish to carry out sensitivity tests to understand controls governing the pattern of ice-stream 

retreat. The objective is to simulate a retreat pattern that is consistent with the glacial 

geomorphology, so that it will pause at, or near, the eight independently mapped GZWs, and in 

particular near those on the reverse-sloping portion of the bed. Changes in climate and sea level are 

used to initiate and drive retreat in our experiments but in order to avoid overprinting any climatic 

or sea-level controls on retreat pattern we impose simple linear rates of change for these parameters. 

The result is a system whose retreat rate can be disentangled from external forcing patterns.  

The initial ice surface is consistent with previous geologically constrained reconstructions of the 

Last Glacial Maximum (LGM) Antarctic Peninsula Ice Sheet
23-24

 and the grounding line is situated 

on the continental shelf edge as dictated by the bathymetric mapping. This initial configuration is in 

‘steady-state’ and results in a modelled ice flux that agrees with the calculated balance flux given by 

the pattern of accumulation within the basin. Ice velocities stabilise at a maximum of 2 km yr
-1 

at 

the grounding line (Figure S1). Over the next 8 kyrs of model time, ice temperature is increased 

from -20 to -15 °C to soften the ice rheology over time, accumulation rates are increased from 65 % 



to 100 % of present day
20

, and sea level is increased from -100 m to 0 m. These values represent 

approximations of environmental change between the LGM and present day in the Marguerite Bay 

area. A 2 kyr stabilisation period where all parameters are held constant is simulated at the end of 

each experiment. Given uncertainties about climate and sea level change, we test different rates of 

linear forcing but find that no significant differences in the pattern of grounding-line retreat or 

stability result from applying more rapid forcing. Experiment A is the baseline model from which 

we then systematically modify the width and bed geometries through Experiments B-D to test the 

hypothesis that internal geometric effects are important controls on the retreat patterns of ice 

streams. Supplementary Video SV1 shows the evolution of Marguerite Bay palaeo-ice stream along 

with its ice flux and ice velocity during Experiment A (described in the main text) and illustrates the 

temporary stabilization of the grounding line on the reverse sloping bed. Figures S4 and S5 show 

ice flux and ice surface elevation at a range of locations along the ice stream during the main period 

of grounding-line stabilization. 

The evolution of basal (
b ) and lateral (

lat ) shear stresses in the modelled stress balance (Eqn. 1 

and 2) in reference Experiment A are shown in Figure S2, indicating the changes in force balance 

through time. Changes in basal stress are most strongly related to ice thickness and driving stress 

(
d ) and are systematically low. The lateral stress term is highly variable along flow, and is 

consistently and significantly elevated between GZWs 4-6 where the width is narrowest. The initial 

basal (
b ) and lateral (

lat ) stress conditions in Models A-D are compared in Figure S3 and 

demonstrate how the relationships between basal topography and basal stress, and lateral 

topography and lateral stress change in our sensitivity tests. 

 

 

 

 

 

 

 



Figures: 

Supplementary Figure S1: Initial model conditions for experiments A-D equivalent to LGM 

configuration with the grounding line at the continental shelf edge (blue area shows ice body; 

yellow area shows bed, dark blue area shows ocean), rapid ice discharge into the ocean, and low 

basal shear stresses (blue line) in the submarine trough. Note that ice flux (solid black line) fits 

closely with the balance flux (integrated upstream accumulation; dashed black line) indicating that 

the ice stream is in a steady state and is flowing rapidly (red line shows ice velocity) prior to the 

beginning of the retreat experiments.  

 



 

Supplementary Figure S2: Modelled evolution of ice surface (A), trough width (B) and lateral (C)  

and (D) basal shear stress for reference Experiment A. Panel A shows coloured ice surface profiles 

every 2 years with dashed black lines overprinted every 2 kyrs. Orange triangles indicate the 

locations of GZWs 1-8 (Figure 1) and correspond to dashed grey lines in all other panels. Panel B 

indicates the natural trough width used in Experiment A, B and D (grey shading) and the locations 

of the GZWs (grey dashed line, orange triangles) and the model flowline location (black dashed 

line). Coloured lines in panel C and D show the modelled evolution of lateral and basal shear 

stresses respectively (see Eqn. 1 and 2) over time in 50 year intervals. 



 

Supplementary Figure S3: Initial (LGM) stress conditions for experiments A to D. Panel A shows 

the lateral stress term and panel B shows the basal shear stresses as modelled from Equations (1) 

and (2). Dashed grey lines indicate the location of GZWs 1-8 (see Figs. 1 and S2). 



 

Supplementary Figure S4: Modelled ice flux at selected locations along the ice stream (see legend: 

distances are measured from ice divide) during main period of reverse-bed stabilization in 

Experiment A where the grounding line is between GZWs 4 and 5. This shows 1) that there is a 

delayed but significant response from the upstream ice flux, 2) that even after centuries, ice flux 

remains out of balance, and 3) that the ice flux does not return to pre-retreat values, although this is 

partly due to the increase in ice temperature and sea level during the period of stability. 

 

 

 



 

 

Supplementary Figure S5: Modelled ice surface elevation at selected locations along the ice stream 

(see legend: distances are measured from ice divide) during main period of reverse-bed stabilisation 

in Experiment A where the grounding line is between GZWs 4 and 5. This shows that 1) the ice 

surface adjacent to the grounding line adjusts rapidly, but the response is damped in the upstream 

area, and 2) that the overall magnitude of thinning is more significant in the areas furthest away 

from the grounding line, thus illustrating the temporal and spatial scale of upstream adjustment 

when the grounding line stabilises in our experiments. 

 



Caption for Supplementary Video 1 (JamiesonEtAlVideoSV1.mov): Modelled palaeo-ice stream 

retreat showing the outcome of Experiment A (see main text). The model starts from the initial 

condition illustrated in Figure S1 and the evolution of the forcing parameters are shown in the top 

left. Retreat is driven by linearly forcing sea level rise and ice temperature. The black line shows ice 

flux, and the red line indicates ice velocity. Note the nonlinear response to the linear forcing with 

retreat rate slowdowns occurring on the reverse bed slope. 
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