71 research outputs found

    Systemic properties of metabolic networks lead to an epistasis-based model for heterosis

    Get PDF
    The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype–phenotype relationship. From the generalization of Kacser and Burns’ biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we “crossed” virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype–phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis

    COVID-19 first lockdown as a window into language acquisition: Associations between caregiver-child activities and vocabulary gains

    Get PDF
    The COVID-19 pandemic, and the resulting closure of daycare centers worldwide, led to unprecedented changes in children’s learning environments. This period of increased time at home with caregivers, with limited access to external sources (e.g., daycares) provides a unique opportunity to examine the associations between the caregiver-child activities and children’s language development. The vocabularies of 1742 children aged8-36 months across 13 countries and 12 languages were evaluated at the beginning and end of the first lockdown period in their respective countries(from March to September 2020). Children who had less passive screen exposure and whose caregivers read more to them showed larger gains in vocabulary development during lockdown, after controlling for SES and other caregiver-child activities. Children also gained more words than expected (based on normative data) during lockdown; either caregivers were more aware of their child’s development or vocabulary development benefited from intense caregiver-child interaction during lockdown

    A multilab study of bilingual infants: Exploring the preference for infant-directed speech

    Get PDF
    From the earliest months of life, infants prefer listening to and learn better from infant-directed speech (IDS) than adult-directed speech (ADS). Yet, IDS differs within communities, across languages, and across cultures, both in form and in prevalence. This large-scale, multi-site study used the diversity of bilingual infant experiences to explore the impact of different types of linguistic experience on infants’ IDS preference. As part of the multi-lab ManyBabies project, we compared lab-matched samples of 333 bilingual and 385 monolingual infants’ preference for North-American English IDS (cf. ManyBabies Consortium, in press (MB1)), tested in 17 labs in 7 countries. Those infants were tested in two age groups: 6–9 months (the younger sample) and 12–15 months (the older sample). We found that bilingual and monolingual infants both preferred IDS to ADS, and did not differ in terms of the overall magnitude of this preference. However, amongst bilingual infants who were acquiring North-American English (NAE) as a native language, greater exposure to NAE was associated with a stronger IDS preference, extending the previous finding from MB1 that monolinguals learning NAE as a native language showed a stronger preference than infants unexposed to NAE. Together, our findings indicate that IDS preference likely makes a similar contribution to monolingual and bilingual development, and that infants are exquisitely sensitive to the nature and frequency of different types of language input in their early environments

    APOE and Alzheimer disease: a major gene with semi-dominant inheritance

    Get PDF
    Apolipoprotein E (APOE) dependent lifetime risks (LTRs) for Alzheimer Disease (AD) are currently not accurately known and odds ratios alone are insufficient to assess these risks. We calculated AD LTR in 7351 cases and 10 132 controls from Caucasian ancestry using Rochester (USA) incidence data. At the age of 85 the LTR of AD without reference to APOE genotype was 11% in males and 14% in females. At the same age, this risk ranged from 51% for APOE44 male carriers to 60% for APOE44 female carriers, and from 23% for APOE34 male carriers to 30% for APOE34 female carriers, consistent with semi-dominant inheritance of a moderately penetrant gene. Using PAQUID (France) incidence data, estimates were globally similar except that at age 85 the LTRs reached 68 and 35% for APOE 44 and APOE 34 female carriers, respectively. These risks are more similar to those of major genes in Mendelian diseases, such as BRCA1 in breast cancer, than those of low-risk common alleles identified by recent GWAS in complex diseases. In addition, stratification of our data by age groups clearly demonstrates that APOE4 is a risk factor not only for late-onset but for early-onset AD as well. Together, these results urge a reappraisal of the impact of APOE in Alzheimer disease

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium.

    No full text
    Nanocrystals of ZnFe2O4 have been prepared by forced hydrolysis in polyols. Monodisperse, quasi-isotropic, highly crystalline, chemically homogeneous particles have been obtained as single crystals in the nanometer size range or as polycrystals in the submicrometer range depending on the nature of the polyol and the amount of water added. As inferred from EXAFS and XMCD data, the cation distribution in tetrahedral A (Td) and octahedral B (Oh) sites differs from that of bulk material, Fe3+ in A sites being observed in a ratio which depends on the crystallite size
    corecore