202 research outputs found

    3D Surface Measurement for Medical Application—Technical Comparison of Two Established Industrial Surface Scanning Systems

    Get PDF
    In 3D mapping of flexible surfaces (e.g. human faces) measurement errors due to movement or positioning occur. Aggravated by equipment- or researcher-caused mistakes considerable deviations can result. Therefore first the appliances' precision handling and reliability in clinical environment must be established. Aim of this study was to investigate accuracy and precision of two contact-free 3D measurement systems (white light vs. laser). Standard specimens of known diameter for sphere deviation, touch deviation and plane deviation were tested. Both systems are appropriate for medical application acquiring solid data (<mm). The more complex white-light system shows better accuracy at 0.2s measuring time. The laser system is superior concerning robustness, while accuracy is poorer and input time (1.5-2.5s) longer. Due to the clinical demand the white-light system is superior in a laboratory environment, while the laser system is easier to handle under non-laboratory condition

    Constraints on possible phase transitions above the nuclear saturation density

    Get PDF
    We compare different models for hadronic and quark phases of cold baryon-rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka-type mean-field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu-Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.Comment: 28 pages, 18 PostScript figures, submitted to Phys. Rev.

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars

    Get PDF
    We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10−3 to 10−2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate- and silica-rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity's</i> Exploration Campaign

    Get PDF
    This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge and summarizes the science results. Vera Rubin ridge (VRR) is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mt. Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray‐colored patches concentrated towards the upper elevations of VRR, and these gray patches also contain small, dark Fe‐rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric‐related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars’ rock record

    UK Space Agency ``Mars Utah Rover Field Investigation 2016'' (MURFI 2016): Overview of Mission, Aims, and Progress

    Get PDF
    The Mars Utah Rover Field Investigation “MURFI 2016” is a Mars Rover field analogue mission run by the UK Space Agency (UKSA) in collaboration with the Canadian Space Agency (CSA). MURFI 2016 took place between 22nd October and 13th November 2016 and consisted of a field team including an instrumented Rover platform, at the field site near Hanksville (Utah, USA), and an ‘Operations Team’ based in the Mission Control Centre (MOC) at the Harwell Campus near Oxford in the UK.The field site was chosen based on the collaboration with the CSA and its Mars-like local geology. It was used by the CSA in 2015 for Mars Rover trials, and in 2016, several teams used the site, each with their own designated working areas. The two main aims of MURFI 2016 were (i) to develop logistical and leadership experience in running field trials within the UKSA, and (ii) to provide members of the Mars Science community with Rover Operations experience, and hence to build expertise that could be used in the 2020 ExoMars Rover mission, or other future Rover missions. Because MURFI 2016 was the first solely UKSA-led Rover analogue trial, the most important objective was to learn how to best implement Rover trials in general. This included aspects of planning, logistics, field safety, MOC setup and support, communications, person management and science team development. Some aspects were based on past experience from previous trials but the focus was on ‘learning through experience’ - especially in terms of the Operations Team, who each took on a variety of roles during the mission
    • 

    corecore