15 research outputs found

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∌130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites

    Global population structure of the stable fly (Stomoxys calcitrans) inferred by mitochondrial and nuclear sequence data

    Full text link
    Stomoxys calcitrans (Diptera: Muscidae: Stomoxyini), a synanthropic fly with a worldwide distribution, is recognized to have an important medical and veterinary impact. We conducted a phylogeographic analysis based on several populations from five major zoogeographic regions of the world in order to analyse population genetic structure of S. calcitrans and to trace its global dispersion. Results from mitochondrial (COI, Cyt-b and ND1-16S) and nuclear (ITS2) DNA show a substantial differentiation of Oriental populations (first lineage) from the Afrotropical, Palearctic, Nearctic, Neotropical and Oceanian populations (second lineage). The divergence time analyses suggest the separation between the two lineages approximately in mid-Pleistocene. Oriental populations are isolated and would not have participated in the colonization of other regions, unlike the Afrotropical one which seems to be the source of S. calcitrans dispersion towards other regions. Demographic analyses indicate that Oriental, Afrotropical and Palearctic regions have undergone a population expansion during late Pleistocene-early Holocene. The expansion time of this cosmopolitan species could have been influenced by continental human expansions and by animal domestication. © 2010 Elsevier B.V

    Phylogenetic analyses of mitochondrial and nuclear data in haematophagous flies support the paraphyly of the genus Stomoxys (Diptera: Muscidae)

    Get PDF
    The genus Stomoxys Geoffroy (Diptera; Muscidae) contains species of parasitic flies that are of medical and economic importance. We conducted a phylogenetic analysis including 10 representative species of the genus including multiple exemplars, together with the closely related genera Prostomoxys Zumpt, Haematobosca Bezzi, and Haematobia Lepeletier & Serville. Phylogenetic relationships were inferred using maximum likelihood and Bayesian methods from DNA fragments from the cytochrome c oxidase subunit I (COI, 753. bp) and cytochrome b (CytB, 587. bp) mitochondrial genes, and the nuclear ribosomal internal transcribed spacer 2 (ITS2, 426. bp). The combination of mitochondrial and nuclear data strongly supports the paraphyly of the genus Stomoxys because of the inclusion of Prostomoxys saegerae Zumpt. This unexpected result suggests that Prostomoxys should be renamed into Stomoxys. Also, the deep molecular divergence observed between the subspecies Stomoxys niger niger Macquart and S. niger bilineatus GrĂŒnbreg led us to propose that they should rather be considered as distinct species, in agreement with ecological data. Bayesian phylogenetic analyses support three distinct lineages within the genus Stomoxys with a strong biogeographical component. The first lineage consists solely of the divergent Asian species S. indicus Picard which appears as the sister-group to all remaining Stomoxys species. The second clade groups the strictly African species Stomoxys inornatus GrĂŒnbreg, Stomoxys transvittatus Villeneuve, Stomoxys omega Newstead, and Stomoxys pallidus Roubaud. Finally, the third clade includes both African occurring and more widespread species such as the livestock pest Stomoxys calcitrans Linnaeus. Divergence time estimates indicate that the genus Stomoxys originated in the late Oligocene around 30 million years ago, with the major lineages diversifying in the Early Miocene between 20 and 15 million years ago at a time when temperate forests developed in the Northern Hemisphere. © 2011 Elsevier B.V

    Landscape, population structure and genetic diversity of Stomoxys calcitrans

    No full text
    To investigate whether different landscapes could affect genetic diversity and structure of the cosmopolitan diptera Stomoxys calcitrans, populations from Gabon and southern France were studied using dominant amplified fragment length polymorphism (AFLP) markers. Gabon is characterized by a forested closed landscape, and southern France by an open Mediterranean landscape. The genetic diversity between Gabon and France populations did not differ significantly (P > 0.05). Contrary to our expectation, this study shows a moderate level of genetic differentiation between these two distant countries (Fst = 0.0979) and a low genetic structure among Gabonese and French populations (Fst = 0.0291 and 0.0275 respectively). This result could indicate the capacities of S. calcitrans populations to sustain a high level of gene flow, despite geographic distance and isolation

    Landscape, population structure and genetic diversity of

    No full text
    To investigate whether different landscapes could affect genetic diversity and structure of the cosmopolitan diptera Stomoxys calcitrans, populations from Gabon and southern France were studied using dominant amplified fragment length polymorphism (AFLP) markers. Gabon is characterized by a forested closed landscape, and southern France by an open Mediterranean landscape. The genetic diversity between Gabon and France populations did not differ significantly (P > 0.05). Contrary to our expectation, this study shows a moderate level of genetic differentiation between these two distant countries (Fst = 0.0979) and a low genetic structure among Gabonese and French populations (Fst = 0.0291 and 0.0275 respectively). This result could indicate the capacities of S. calcitrans populations to sustain a high level of gene flow, despite geographic distance and isolation
    corecore