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Abstract 

The genus Stomoxys Geoffroy (Diptera; Muscidae) contains species of parasitic flies that are 

of medical and economic importance. We conducted a phylogenetic analysis including ten 

representative species of the genus including multiple exemplars, together with the closely 

related genera Prostomoxys Zumpt, Haematobosca Bezzi, and Haematobia Lepeletier & 

Serville. Phylogenetic relationships were inferred using Maximum Likelihood and Bayesian 

methods from DNA fragments from the cytochrome c oxidase subunit I (COI, 753 bp) and 

cytochrome b (CytB, 587 bp) mitochondrial genes, and the nuclear ribosomal internal 

transcribed spacer 2 (ITS2, 426 bp). The combination of mitochondrial and nuclear data 

strongly supports the paraphyly of the genus Stomoxys because of the inclusion of 

Prostomoxys saegerae Zumpt. This unexpected result suggests that Prostomoxys should be 

renamed into Stomoxys. Also, the deep molecular divergence observed between the 

subspecies Stomoxys niger niger Macquart and S. niger bilineatus Grünbreg led us to 

propose that they should rather be considered as distinct species, in agreement with 

ecological data. Bayesian phylogenetic analyses support three distinct lineages within the 

genus Stomoxys with a strong biogeographical component. The first lineage consists solely 

of the divergent Asian species S. indicus Picard which appears as the sister-group to all 

remaining Stomoxys species. The second clade groups the strictly African species S. 

inornatus Grünbreg, S. transvittatus Villeneuve, S. omega Newstead, and S. pallidus 

Roubaud. Finally, the third clade includes both African occurring and more widespread 

species such as the livestock pest S. calcitrans Linnaeus. Divergence time estimates indicate 

that the genus Stomoxys originated in the late Oligocene around 30 million years ago, with 

the major lineages diversifying in the Early Miocene between 20 and 15 million years ago at 

a time when temperate forests developed in the Northern Hemisphere. 
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1. Introduction 

 Stomoxys flies are principally haematophagous, and are associated with livestock 

and wildlife throughout the world. The most studied species, Stomoxys calcitrans, is an 

economically important pest of cattle and several studies have attempted to estimate its 

impact on cattle production (Miller et al., 1973; Campbell et al., 1977; 2001). These flies 

represent a serious nuisance not only because of their painful bites and blood predation, but 

also because they are involved in the mechanical transmission of several pathogens, such 

as the Capripoxvirus causing a cattle disease (Lumpy skin disease), Anaplasma marginale 

the causative agent of severe bovine anaplosmosis, and Dermatophilus congolensis the 

causative agent of dermotophilosis (Zumpt, 1973; D’Amico et al., 1996; Foil & Gorham, 

2000). 

 The genus Stomoxys belongs to the tribe Stomoxyini in the subfamily Muscinae (De 

Carvalho, 1989; Couri & De Carvalho, 2003). This subfamily is part of the large family 

Muscidae comprising about 4,500 described species classified in 180 genera (De Carvalho 

et al., 2005). Within Muscidae, phylogenetic analyses have been conducted at several 

taxonomic levels to assess the relationships among constitutive species (Couri & Pont, 2000; 

Couri & De Carvalho 2003; Schuhli & De Carvalho 2005; De Carvalho & Pont 2006; Schuhli 

et al. 2007). Recently, Nihei & De Carvalho (2007) carried out a cladistic analysis to assess 

the monophyly of the Muscini tribe. However, since the monograph of Zumpt (1973) who 

proposed the monophyly of Stomoxyini on the basis of morphological characters, and despite 

the medical and economic importance of these parasitic flies, no phylogenetic analysis has 

been carried out to assess the relationships within Stomoxyini. The flies of this tribe are 

easily recognized by their typical piercing/sucking mouthparts which differentiate them from 

the common housefly (Musca domestica) and relatives from the Muscini tribe. The 

Stomoxyini tribe consists of 10 genera and about 39 species reviewed by Zumpt (1973), the 

most medically and economically important species are members of the genera 

Haematobosca, Haematobia and Stomoxys. 

 The genus Stomoxys, which originated from the Old World, includes 18 species 

(Zumpt, 1973). Among these species, only S. calcitrans has a worldwide distribution and is a 

synanthropic fly. All other species are exclusively tropical, twelve of which are located on the 

African continent, four on the Asian continent, and one species, S. sitiens Rondani, has been 

reported in both Africa and Asia (Zumpt, 1973) (Table 1). 

 In this study, we address the phylogenetic relationships of the Stomoxys genus using 

mitochondrial (COI, CytB) and nuclear ribosomal (ITS2) nucleotide sequences. Mitochondrial 

DNA (mtDNA) has been widely used in systematic and many universal PCR primers are 

available for genes like COI and CytB (Avise, 2004). The ITS2 region is easy to amplify and 

have been used in previous phylogenetic studies of Diptera (Hwang, 2007; Thanwisai et al., 
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2006). This work explores congruence and information content within the different molecular 

datasets analysed using probabilistic methods of phylogenetic reconstruction. Phylogenetic 

results are discussed and taken into consideration to propose a taxonomic revision of the 

group. Also, we propose estimations of divergence times for major clades within Stomoxyini 

based on a relaxed molecular clock approach. This allowed discussing the evolutionary 

history of Stomoxys species in its biogeographical context. 

 

 

2. Materials and methods 

 

2.1. Taxon sampling 

 The material used in this study belongs to the Laboratoire de Zoogéographie of the 

Université Paul-Valéry in Montpellier (France), and to the Department of Entomology of the 

Natural History Museum in London (United-Kingdom). For Stomoxys we sampled 11 

representative species or subspecies. As outgroups, we incorporated Prostomoxys 

saegerae, the unique representative species of Prostomoxys, and Haematobosca 

croceicornis, a newly described species from Gabon (Pont & Dsouli, 2008). For this study, 

we also included sequences of Haematobia irritans and Musca domestica (Muscidae), as 

well as species belonging to the more distantly related Drosophilidae, Syrphidae and 

Dolichopodidae families in order to provide calibration points for molecular dating analyses 

(Wiegmann et al., 2003). Geographical origins of studied specimens and sequences 

accession numbers are listed in Table 2. Specimens are available upon request from the 

corresponding author and are stored in the Laboratoire de Zoogéographie of the Université 

Paul-Valéry in Montpellier (France). 

 

2.2. DNA extraction, amplification and sequencing 

 Genomic DNA was extracted using the DNAeasy tissue Kit (QIAGEN) to a final 

volume of 180 µl. Amplifications by PCR, using the specific primer pairs described in Table 3, 

led to amplicons of different lengths for the COI (753 bp), CytB (587 bp) and ITS2 (~ 430 bp) 

regions. All PCR amplifications were performed in a 30µl reaction volume containing, at final 

concentrations, 200 µM dNTPs (diNucleotide Tri Phosphate), 10X buffer, 25µM of each 

primers and 0.5µl of Taq polymerase (Eurogentec Red GoldStar®), and 3 µl of purified DNA. 

Thermal cycling conditions for PCR were as followed: initial denaturation at 94°C for 4 min., 

35 cycles of denaturation at 94°C for 40 sec., annealing at 48-50°C for COI, 57-58°C for 

CytB, and 60-62°C for ITS2, and extension at 72°C for 1 min. A final elongation step at 72°C 

for 10 min completed the DNA amplification process. Ten specimens for each species were 
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sequenced using Sanger sequencing on an ABI 3730 automatic sequencer at the Centre 

National de Séquençage (Génoscope) in Evry (France). 

 

2.3. Phylogenetic analyses 

 The nucleotide sequences from COI, CytB, and ITS2 were automatically aligned 

using the multiple alignment program ClustalW 1.4 (Thompson et al., 1994) using default 

parameters. Multiple sequence alignments were then adjusted by visual inspection, taking 

the sequences of S. calcitrans available in GenBank as a reference for each gene portion. 

Alignments were cleaned from problematic alignment blocks using Gblocks 0.91 

(Castresana, 2000) using the following parameters: Minimum number of sequences for a 

conserved position = 38; Minimum number of sequences for a flanking position = 38; 

Maximum number of contiguous nonconserved positions = 8; Minimum length of a block = 5; 

Allowed gap positions = with half. 

 Probabilistic analyses were carried out on each individual datasets (COI, CytB, and 

ITS2). Maximum likelihood (ML) reconstruction was conducted using PAUP* 4.0b10 

(Swofford, 2002). The best-fitting models of sequence evolution for different partitions were 

determined based on the Akaike Information Criterion (AIC) as implemented in jModelTest 

(Posada, 2008) using PHYML (Guindon & Gascuel, 2003) for calculating likelihood scores. 

ML heuristic searches were conducted with PAUP* using Tree Bisection Reconnection (TBR) 

branch-swapping on a Neighbor-Joining (NJ) starting tree using the best-fitting model and 

associated parameters selected by jModelTest. ML bootstrap proportions were obtained by 

repeating the same ML heuristic search on 100 pseudo-replicated datasets in order to 

evaluate the confidence for each node of the tree topology. 

 Crossed statistical SH tests (Shimodaira & Hasegawa 1999) of congruence between 

the three genes were performed in PAUP* by testing the best ML topology obtained from 

each gene against the topology inferred from their concatenation. These tests were run using 

each individual gene dataset and the concatenated dataset (see Table 4 for details). 

 Bayesian phylogenetic inference was conducted using MrBayes 3.1.2 (Ronquist & 

Huelsenbeck, 2003). Three a priori partition schemes were tested for analyzing the 

concatenation of the three genes (COI, CytB, and ITS2): one single partition, a 3 gene 

partition, and a 7 partition scheme distinguishing 6 partitions for each codon position of the 

two coding genes (COI and CytB) plus a single partition for ITS2. For each partition, we used 

the best-fitting model selected by jModelTest. Bayesian inference under each partition 

scheme was conducted with two independent runs of four incrementally-heated Metropolis 

Coupled Markov Chain Monte Carlo (MCMCMC) starting from a random tree. MCMCMC 

were run for 3,000,000 generations with trees and associated model parameters being 

sampled every 300 generations. The initial 2,000 trees in each run were discarded as burn-in 
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samples and the harmonic mean of the likelihood was calculated by combining the two 

independent runs. The harmonic means were then used to compute the Bayes factor for the 

three possible partition comparisons (no partition versus 3 partitions by gene, no partition 

versus 7 partitions by codon and gene, and 3 partitions by gene versus 7 partitions by codon 

and gene). The best partition strategy was then determined by the 2ln Bayes factor criterion 

as recommended by Brandley et al. (2005). The 50% majority-rule consensus tree was then 

computed from the 16,000 trees sampled in the two independent runs under the best model. 

Posterior probabilities greater than or equal to 95 % are generally regarded as strong support 

for a clade (Wilcox et al., 2002), but the correspondence with bootstrap support values is not 

exact (Douady et al., 2003). 

 

2.4. Molecular datings 

 Bayesian estimation of divergence times under relaxed-clock models was conducted 

using the Multidivtime package (Thorne & Kishino, 2002). We used the previously estimated 

Bayesian topology as the best hypothesis for Stomoxys phylogeny onto which divergence 

dates were estimated. The inclusion of species belonging to Drosophilidae (Drosophila virilis, 

D. melanogaster and D. yakuba), Syrphidae (Simosyrphus grandicornis, Cheilosia longula 

and C. naruska) and Dolichopodidae (Dolichopus longula and D. nubilus), which represent 

other brachyceran groups, allowed calibrating the tree. Indeed, based on a previously 

established timescale for brachyceran flies from Bayesian analyses of 28S rRNA data 

(Wiegmann et al., 2003), our tree was calibrated by using (1) the occurrence of Schizophora 

87 million years ago (Mya) as the a priori expected number of time units between tip and 

root, and (2) the estimated date of the Drosophila/Musca split between 48 and 51 Mya as the 

calibration constraint. This previous molecular estimate was used in the absence of any 

relevant fossil calibration for Stomoxyini. 

 First, the program Baseml of the PAML package version 4.2b (Yang, 2007) was used 

to estimate the nucleotide frequencies, transition/transversion ratio, and rate heterogeneity 

among sites for the concatenated dataset. These values parameterize the F84+G nucleotide 

substitution model. Second, we calculated the branch lengths of the constrained topology 

and the associated variance-covariance matrix under this model using with the program 

Estbranches. Finally, the program Multidivtime was used to run a Markov chain Monte Carlo 

(MCMC) for estimating mean posterior divergence times on nodes with associated standard 

deviations and 95% credibility intervals (95% CredI) from the variance–covariance matrix 

produced by Estbranches. The MCMC was sampled 10,000 times every 100 cycles after a 

burn-in stage of 100,000 cycles. The prior for the expected number of time units between tip 

and root was set at 87 Mya (SD = 43 Mya). The estimated branch lengths obtained by 

Estbranches were used to estimate the median amount of evolution between the root and all 
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the tips of the ingroup. Other priors for gamma distribution of the rate at root node (rtrate and 

rtratesd) and the Brownian motion constant describing the rate variation (brownmean and 

brownsd) were derived from the median branch length of the phylogram. The highest 

possible number of time units between tip and root (Bigtime) was set to 119 Mya which 

corresponds to the upper bound of the 95% CredI for Schizophora as estimated by 

Wiegmann et al. (2003). The age of the node Musca/Drosophila was constrained using an 

upper bound of 51 Mya and a lower bound of 48 Mya (Wiegmann et al., 2003). 

 

 

3. Results 

 

3.1. Sequence characteristics 

 Alignment statistics and models selected for phylogenetic analyses for each data 

partitions are summarized in Table 5. Alignment of the mitochondrial genes was 

straightforward, as no indels were introduced. The alignment of COI sequences resulted in 

753 nucleotide sites of which 228 (30.3%) are variable, and 198 (26.3 %) are parsimony 

informative. jModelTest identified the GTR+G+I model as the best-fitting model for the COI 

gene (lnL= -3610.24) based on the AIC. The gamma distribution shape parameter (alpha) 

was estimated to 0.2 which reveals strong among-site rate heterogeneity in this barcoding 

gene. The CytB alignment contained 587 sites of which 204 (34.8%) are variable and 161 

(27.4 %) are informative. jModelTest also identified the GTR+G+I model as the best-fitting 

nucleotide substitution model for the CytB gene (lnL= -3121.46) with an estimated alpha of 

0.62. Finally, the initial alignment of ITS2 sequences totalized 426 sites including indels. 131 

sites corresponding to ambiguously aligned hypervariable regions were excluded from 

subsequent analyses by applying Gblocks. The remaining 295 sites contain 168 (57 %) 

variable sites of which 147 (50 %) are parsimony informative which makes this marker the 

most variable of our study. jModelTest identified the HKY+G model as the best-fitting model 

for the ITS2 marker (lnL= -2454.70). The gamma distribution shape parameter alpha was 

estimated to 0.43 in this ribosomal internal transcribed spacer. 

 

3.2. Phylogenetic relationships 

 We evaluated topological congruence among the individual genes by computing 

crossed SH tests in which the highest-likelihood topologies obtained with each individual 

datasets and their concatenation were compared against each other (Table 4). While there is 

apparent incongruence among the individual markers, none of the three individual datasets 

in fact significantly rejects the ML topology supported by their concatenation (see last line of 

Table 4). This indicates that combining the three individual gene datasets leads to a 
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phylogenetic estimate that is compatible with the signal contributed by each individual gene. 

We therefore decided to concatenate the three datasets in order to maximize the number of 

characters analysed and to enhance the phylogenetic signal as advocated by Delsuc et al. 

(2002). 

 The total number of nucleotide positions in the concatenation was 1635. Bayes factor 

comparisons showed that the best-fitting model for the whole concatenation was the use of a 

single GTR+G model. Indeed, the 2ln Bayes factor criterion (Brandley et al., 2005) was 

always in favour of H0 in the three partition scheme comparisons (2lnBF < 0.03) indicating 

that it was not worth partitioning in our case. The phylogenies obtained from ML and 

Bayesian methods under a single GTR+G were identical, but the Bayesian analysis provided 

higher support values for most of the nodes (Fig. 1). Our results support the monophyly of 

Haematobia and Haematobosca (PP = 1.0; BPML = 71), and this clade appears as the sister-

group to the remaining Stomoxyini. The genus Stomoxys is rendered paraphyletic with strong 

support (PP = 1.0; BPML = 90) due to the inclusion of Prostomoxys saegerae within it, as a 

sister-group to S. varipes (Fig. 1). Strong support is obtained (PP = 1.00; BPML = 97) for S. 

indicus as representing the sister-group to all remaining species within the Stomoxys group 

(Fig. 1). Three major clades can be distinguished according to the Bayesian consensus tree 

within Stomoxyini. The first clade (clade A) is represented by S. indicus alone which is an 

Asian species. The second clade (clade B) is well supported (PP = 0.99 and BPML = 63) and 

groups species from African origin (S. pallidus, S. omega, S. transvittatus, and S. inornatus). 

Finally, the third clade (clade C), only supported by the Bayesian analysis (PP = 0.92), 

regroups all the remaining species containing cosmopolitan, African, and Asian species. This 

clade can be further divided into three subclades. The first subclade associates the two 

subspecies S. niger niger and S. niger bilineatus (PP = 0.98), the second subclade 

associates P. saegerae and S. varipes (PP = 0.89), and the third subclade composed of S. 

calcitrans, S. sitiens, and S. bengalensis (PP = 1.0; BPML = 56) with S. sitiens and S. 

bengalensis being sister-groups (PP = 1.0; BPML = 91) (Fig. 1). 

 

3.3. Estimation of Divergence times 

 The divergence time estimates are presented as a chronogram where branching 

nodes correspond to the mean age estimated from the posterior distribution and its 

associated 95% CredI (Fig. 2). The divergence time between the Stomoxys genus and its 

Haematobia + Haematobosca sister-clade is estimated around 30.8 Mya (95% CredI: 40.3-

22.3). The age estimate for the early emergence of S. indicus (clade A) within the genus 

Stomoxys is estimated at about 27 Mya (36.6-18.9). The divergence between clade B and 

clade C occurred around 20.8 Mya (29.6-13.6). According to this inferred timescale, the 

major lineages within the genus Stomoxys were present by the late Oligocene, whilst the 
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greatest amount of cladogenesis occurred during the Early Miocene. The two subspecies of 

S. niger (S. niger niger and S. niger bilineatus) separated around 16.3 Mya (24.2-10.3), a 

divergence time almost exactly similar to the one inferred for the separation between the 

species S. inornatus and S. transvittatus estimated at 16.4 Mya (24.6-10.0). Finally, the 

divergence between P. saegerae and S. varipes is estimated to have occurred 14.2 Mya 

(21.6-8.5) concomitantly with the separation of S. calcitrans from its S. bengalensis/S. sitiens 

sister-clade at 14.1 Mya (21.5-8.5). 

 

 

4. Discussion 

 

4.1. Phylogenetic relationships and taxonomy of the Stomoxys group 

 The phylogenetic analyses performed in the present study allowed reconstructing a 

phylogenetic framework for the major constitutive species of the genus Stomoxys and closely 

related genera. Our analyses strongly support the monophyly of Stomoxyini including a 

monophyletic group consisting of Haematobia and Haematobosca as a sister-clade to all 

remaining Stomoxyini. However, according to our results the genus Stomoxys sensu stricto 

is found to be paraphyletic due to the unexpected position of Prostomoxys saegerae which 

appears to be well nested within the Stomoxys group as a sister-group to S. varipes (Fig. 1). 

Zumpt (1973) created the genus Prostomoxys for the sole species P. saegerae. According to 

Zumpt’s identification key for Stomoxyini, Prostomoxys is characterized by maxillary palps 

that are as long as the proboscis, whereas Stomoxys is characterized by palps that are 

shorter than half the length of the proboscis. This key includes no other diagnostic character 

for the distinction of this genus from Stomoxys. Zumpt (1973) mentioned that the 

plesiomorphic form of the Stomoxyini mouthparts can be accepted as the maxillary palps 

being about as long as the proboscis. Based on our phylogenetic study there appears to be 

no reason to incorporate this species in a separate genus as P. saegerae is in fact closely 

related to Stomoxys species. Prostomoxys should thus be synonymised with Stomoxys, and 

the species Prostomoxys saegerae must be renamed into Stomoxys saegerae. The long 

palp characters would be better considered as mere specific traits, since they are likely to be 

plesiomorphic. 

 Within Stomoxys lato sensu (including P. saegerae), our phylogenetic analyses 

strongly support the placement of S. indicus as the sister-group to the remaining Stomoxys 

species. Taxonomically, S. indicus is considered to be highly variable, with a number of 

synonyms used in the entomological literature. As mentioned by Zumpt (1973): “it is possible 

that a numerical taxonomic study based on great numbers of specimens from various 

populations may reveal that several subspecies may be retained in the future”. This species 
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is described as the most common Stomoxys species in the Oriental region after S. calcitrans 

and has been recorded from India to the Pacific islands of Fiji and Samoa, including China 

and Japan. Its geographic range also reaches the Palaearctic region on the occidental side. 

Moreover, it has also been recorded in a number of South-East Asian countries such as 

Thailand (Masmeatathip et al., 2006), Malaysia, Viet Nam, Taiwan, Borneo, Sumatra, and 

Java (Zumpt, 1973). Since both of our samples are from Thailand origin, they provide no 

information on the genetic diversity among populations of the species, but they reveal its 

evolutionary distinctiveness from other members of the genus Stomoxys. 

 The remaining Stomoxys species included in our study can be divided in two main 

clades. Clade B contains only African species and clade C groups both African and more 

geographically widespread species (Fig. 1). Clade B regroups S. inornatus, S. transvitattus, 

S. omega and S. pallidus sampled from different parts of the Ethiopian region. These species 

are ubiquitous and are restricted mainly to forest ecotones where they feed especially on 

wildlife fauna (Mavoungou et al., 2008). This large clade appears to be divided in two main 

subclades associating S. inornatus and S. transvittatus on one side, and S. omega and S. 

pallidus, on the other side. S. inornatus and S. transvittatus have a diurnal activity whereas 

S. omega and S. pallidus have a crepuscular activity (Duvallet, unpublished data). These 

observations would fit well with the proposed phylogeny. However, the information content of 

ecological data for phylogeny is probably limited since activity levels in Stomoxys have been 

shown to be highly dependent upon geographical origin (primary forest, secondary forest and 

human-modified area) (Mavoungou et al., 2008), climate (temperature, humidity, and solar 

radiation level) (Kangwagye, 1974; Charlwood & Lopes, 1980), trapping method, and 

physiological state of individuals (Simmond, 1944; La Breque et al., 1975). 

 The third clade C can be divided into three subclades, two of them being exclusively 

African, and one being more geographically widespread. The first subclade groups S. niger 

niger and S. niger bilineatus, considered as two subspecies of S. niger according to Zumpt 

(1973), whereas the second subclade associates P. saegerae and S. varipes. Solving 

species boundaries between closely related species is notoriously difficult in these parasitic 

flies. Based on the tree topology, S. niger niger and S. niger bilineatus sequences form 

distinct phylogenetic clusters. The pairwise distance between S. niger niger and S. niger 

bilineatus based on COI sequences is 8.2%. The use of DNA sequences for species 

delimitation has been widely criticized (Tautz et al., 2002; DeSalle et al., 2005; Meier et al., 

2006). The wide overlap between intraspecific and interspecific variability observed in 

Diptera COI sequences (0% to 15.5%) (Meier et al. 2006) is especially problematic here, 

since the pairwise distance for these subspecies falls into this overlapping area. However, 

the genetic distance between S. niger niger and S. niger bilineatus based on the nuclear 

ITS2 is also quite large with 14.3 %. Moreover, our molecular dating analysis estimates the 
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separation between the two subspecies around 16.3 Mya (Fig. 2). This is almost as old as 

the separation between S. inornatus and S. transvittatus (c.a. 16.4 Mya) and is comparable 

with the divergence observed between D. melanogaster and D. yakuba (c.a 16.2 Mya). It is 

also more ancient than the divergence between S. omega and S. pallidus (c.a. 12.4 Mya), 

and even more ancient than the split between S. varipes and P. saegerae (c.a. 14.2 Mya) 

(Fig. 2). 

 Morphologically, S. niger niger and S. niger bilineatus are distinguished only by the 

colour of their tibiae and tarsi. Mavoungou et al. (2008) described S. niger bilineatus and S. 

niger niger as sympatric species, the former being abundant in savannas with abundant wild 

fauna, while the latter is more associated with anthropized area. Mihok et al. (1996) also 

pointed out differences in habitat affinities, sex ratio and activity patterns between these 

species. Given morphological observations, ecological isolation and molecular data, it 

appears very likely that S. niger niger and S. niger bilineatus belong to different species. 

Consequently, we suggest raising them to full specific status and to use S. niger and S. 

bilineatus as species names. 

 Finally, the third subclade within clade C associates S. calcitrans, S. sitiens and S. 

bengalensis Picard. S. bengalensis occurs only in Asia, S. sitiens is found in both the African 

and Asian continents, while the livestock pest S. calcitrans has a worldwide distribution. S. 

calcitrans and S. sitiens appeared to be strictly human commensals since they have 

invariably been found in association with human activity, including inside buildings. 

 

4.2. Molecular timescale and biogeography of the Stomoxys group 

 Our molecular estimate of the separation between Stomoxyini and Muscini falls into 

the Late Eocene epoch (c.a. 34.9 Mya) (Fig. 2). This divergence time is compatible with the 

record of the oldest Muscidae fossils in the Eocene and the Lower Miocene, 50-20 Mya 

(Evenhuis, 1994). The oldest Muscini fossil (about 20-15 Mya) was described from 

Dominican amber (Pont & De Carvalho, 1997), whereas no Stomoxyini fossil has been 

reported yet. The results presented here show that the radiation of the major Stomoxyini 

groups largely overlaps with the hypothetical time span (mid-Oligocene to mid-Miocene) 

during which temperate forests developed in the Northern Hemisphere (Guo et al., 2002). 

 The genus Stomoxys appears to diverge from other Stomoxyini genera in the 

Oligocene (c.a. 30 Mya). An Oriental origin of the Stomoxys genus lato sensu is tentatively 

suggested, owing to the strong support obtained for the basal branching of S. indicus (Clade 

A) and its absence from Africa. Under such a scenario, the common ancestor of the 

remaining Stomoxys members would have then split into two groups in the Early Miocene 

(c.a. 21 Mya), with one group being distributed in the Ethiopian region (Clade B), while the 

other colonized Asia (Clade C). The collision between Eurasia and the Arabo-African plate 
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was initiated by the Oligocene, but the Early Miocene period seems to have been key for the 

establishment of intercontinental pathways permitting faunal exchanges between the Afro-

Arabian and Asia plates (Bernor et al., 1987). This biogeographical event fits well with our 

estimates of the split between clades B and C occurring within this period. Continental 

exchanges through migration events continued until the Late Miocene and could explained 

the occurrence of S. calcitrans and S. sitiens in both the African and Asian continents. 

Migration until the Late Miocene may have been facilitated by a forest connection that 

existed between the African and Oriental regions at this epoch (Moreau, 1963). 

 Our study is a first step into the molecular phylogenetic analysis of the Stomoxys 

genus. Yet, our results point to the need for a taxonomic revision of the Stomoxyini tribe. 

Since very few data on the biology and ecology of this group are currently available it would 

be necessary to advance the knowledge in these basic research areas. This is a prerequisite 

for better understanding how these species originated and diversified in a biogeographical 

context. 
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Figure legends 

 

Fig. 1. Phylogenetic relationships among 33 dipteran species inferred from the concatenation 

of COI, CytB and ITS2 (1635 nucleotide sites). This phylogram is the 50% majority rule 

consensus tree obtained with Bayesian inference under the GTR+G model. Numbers at 

nodes indicate Posterior Probabilities (PP) / Maximum Likelihood Bootstrap Proportions 

(BPML). Black circles indicate nodes receiving maximum values of PP and BP and dashes 

mark nodes above the 50% level. The three main lineages identified within the Stomoxys 

group are labeled A, B, and C. 

 

Fig. 2. Chronogram resulting from the relaxed molecular clock Bayesian analysis of the 

concatenation of COI, CytB and ITS2 (1635 nucleotide sites). Mean divergence times are 

indicated at nodes and node bars represent 95% Credibility Intervals. Scale is in Millions of 

years before present. Species names belonging to the genus Stomoxys have been 

abbreviated (S.). The Drosophila/Musca calibration constraint is shown in black. Tertiary 

Epochs are indicated following the geologic timescale 2004 of the Geological Society of 

America (Gradstein et al., 2004). Plio.: Pliocene; Pleist.: Pleistocene. 
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Table 1. Stomoxys species distributions as mentioned by Zumpt (1973). 
 
Species Distribution 
S. bengalensis Picard India to Java 
S. boueti Roubaud Benin (ex-Dahomey), Congo 
S. calcitrans (Linnaeus) Cosmopolitan 
S. indicus Picard Oriental region and neighbouring Paleartic territories 
S. inornatus Grünberg Tropical Africa 
S. luteolus Villeneuve Central and East Africa 
S. niger Macquart  

     S. niger niger Ethiopian and Madagascan regions 

     S. niger bilineatus Ethiopian and Madagascan regions 

S. ochrosoma Speiser Central and East Africa 
S. omega Newstead Ethiopian Region 
S. pallidus Roubaud Tropical Africa 
S. pullus Austen India 
S. sitiens Rondani Ethiopian and Oriental regions, in Egypt it reaches the 

Palearctic region 
S. stigma Van Emden Uganda – Congo 
S. taeniatus Bigot Ethiopian region 
S. transvittatus Villeneuve Southern and Central Africa 
S. uruma Shinonaga & Kano Oriental region 
S. varipes Bezzi East and Central Africa southward to Rhodesia 
S. xanthomelas Roubaud Congo – Tanzania – Uganda 
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Table 2. Species sampling, source localities, and GenBank accession numbers. 
 
Species Origin COI CytB ITS2 

Stomoxys calcitrans India EU836073-
EU836074 

EU851301 NA 

 Thailand EU836075-
EU836082 

EU851303-
EU851308 

EU851200-
EU851208 

 Cameroun EU836070 EU851302 EU851199 

Stomoxys indicus Thailand EU836083-
EU836092 

EU851309-
EU851318 

EU851209-
EU851218 

Stomoxys sitiens Thailand EU836131-
EU836138 

EU851357-
EU851364 

EU851251-
EU851257 

 Burkina 
Faso 

FJ386382 FJ386381 NA 

Stomoxys bengalensis Thailand EU836060-
EU836068 

EU851281-
EU851288 

EU851191-
EU851198 

Stomoxys niger niger Gabon EU836110-
EU836115 

EU851327-
EU85133 

EU851228-
EU851237 

Stomoxys niger bilineatus Gabon EU836101-
EU836108 

EU851289-
EU851295 

EU851219-
EU851227 

Stomoxys varipes Ethiopia EU836147-
EU836148 

EU851372-
EU851374 

EU851189-
EU851190 

Stomoxys transvittatus Gabon EU836139-
EU836145 

EU851365-
EU851370 

EU851258-
EU851265 

Stomoxys inornatus Gabon EU836093-
EU836100 

EU851319-
EU851326 

EU851179-
EU851188 

Stomoxys omega Gabon EU836116-
EU836121 

EU851339-
EU851346 

EU851238-
EU851244 

Stomoxys pallidus Gabon EU836122-
EU836130 

EU851347-
EU851356 

EU851245-
EU851250 

Prostomoxys saegerae Gabon EU836055-
EU836059 

EU851275-
EU851280 

EU851266-
EU851270 

Haematobosca croceicornis Gabon EU836053-
EU836054 

EU851273-
EU851274 

EU851271-
EU851272 

Haematobia irritans  - AY526195* DQ029097* DQ437515* 

Musca domestica - AF104622* DQ657064* Z28417* 

Drosophila yakuba - NC_001322* NC_001322* Z28416* 

Drosophila melanogaster - NC_001709* NC_001709* EU306667* 

Drosophila virilis - DQ471577* AY646771* Z28415* 

Cheilosia naruska - DQ417498*  NA FJ028661* 

Cheilosia longula - FJ158631* NA FJ158631* 

Simosyrphus grandicornis - NC_008754* NC_008754* NA 

Dolichopus nubilus - AY958244* AY958244* NA 

Dolichopus excisus - AY958245* AY958245* NA 
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The sequences marked with an asterisk (*) were obtained from GenBank, (NA) no available 
data. 
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Table 3. COI, CytB and ITS2 Primers used for amplifications and sequencing. 
 
Primers Sequences (5’->3’) Reference 
C1-J-2813 (direct) 
TL2-N-3014 (reverse) 

CAACATTTATTTTGATTTTTTGG 
TCCATTGCACTAATCTGCCATATTA 

Simon et al.,1994; 
2006 

CB-J10933 (direct) 
CB-N11526 (reverse) 

GTTTTACCTTGAGGACAAATATC 
TTCAACTGGTCGAGCTCCAATTCA Simon et al., 1994 

ITS2A (direct) 
ITS2B (reverse) 

TGTGAACTGCAGGACACAT 
TATGCTTAAATTCAGGGGGT Sharpe et al., 2000 
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Table 4. Statistical tests of topological congruence among the three genes using crossed SH 
tests (Shimodaira and Hasegawa 1999). 
 
 Datasets    
Topologies CO1 CYTB ITS2 Concatenation 
CO1 5207.93 42.75* 72.91* 70.32ns 
CYTB 145.87* 4174.34 144.34* 297.63* 
ITS2 162.32* 200.42* 2452.65 323.39* 
Concatenation 12.89ns 23.69ns 3.86ns 12265.83 
 
Log-likelihood values of ML topologies inferred from each individual gene (CO1, CYTB and 
ITS2) and from their concatenation were computed using each of the four data matrices and 
then compared with the corresponding highest log-likelihood value (in bold). The difference in 
log-likelihood values derived from these crossed comparisons are indicated. An asterisk (*) 
signifies that the tested topology is significantly worse at the 5% level than the best ML 
topology inferred from the corresponding dataset. ns means that this difference is not 
statistically significant. 
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Table 5. Best fitting models and associated maximum likelihood parameters obtained for the 
gene partitions used in this study. 
 
Dataset Sites A T C G Best 

Model 
Alpha Pinv 

COI 753 0.31 0.41 0.14 0.14 GTR+I+G 0.2 0.01 
      First Pos. 251 0.46 0.49 0.04 0.01 TrN+G 0.45 - 
     Second Pos. 251 0.29 0.32 0.12 0.27 GTR+G 0.16 - 
      Third Pos. 251 0.21 0.41 0.24 0.14 HKY+I - 0.80 
CytB 587 0.32 0.42 0.14 0.12 GTR+I+G 0.62 0.35 
      First Pos. 196 0.30 0.32 0.16 0.21 TIM+G 0.24 - 
     Second Pos. 196 0.20 0.46 0.29 0.11 HKY+I - 0.68 
     Third Pos. 195 0.45 0.48 0.06 0.01 HKY+G 0.77 - 
ITS2 295 0.36 0.37 0.10 0.17 HKY+G 0.43 - 
Concatenation 1635 0.33 0.11 0.12 0.44 GTR+I+G 0.95 0.44 
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