68 research outputs found

    A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-  nuclear translocation

    Get PDF
    Nocturnin (NOC) is a circadian-regulated protein related to the yeast family of transcription factors involved in the cellular response to nutrient status. In mammals, NOC functions as a deadenylase but lacks a transcriptional activation domain. It is highly expressed in bone-marrow stromal cells (BMSCs), hepatocytes, and adipocytes. In BMSCs exposed to the PPAR-γ (peroxisome proliferator-activated receptor-γ) agonist rosiglitazone, Noc expression was enhanced 30-fold. Previously, we reported that Noc−/− mice had low body temperature, were protected from diet-induced obesity, and most importantly exhibited absence of Pparg circadian rhythmicity on a high-fat diet. Consistent with its role in influencing BMSCs allocation, Noc−/− mice have reduced bone marrow adiposity and high bone mass. In that same vein, NOC overexpression enhances adipogenesis in 3T3-L1 cells but negatively regulates osteogenesis in MC3T3-E1 cells. NOC and a mutated form, which lacks deadenylase activity, bind to PPAR-γ and markedly enhance PPAR-γ transcriptional activity. Both WT and mutant NOC facilitate nuclear translocation of PPAR-γ. Importantly, NOC-mediated nuclear translocation of PPAR-γ is blocked by a short peptide fragment of NOC that inhibits its physical interaction with PPAR-γ. The inhibitory effect of this NOC-peptide was partially reversed by rosiglitazone, suggesting that effect of NOC on PPAR-γ nuclear translocation may be independent of ligand-mediated PPAR-γ activation. In sum, Noc plays a unique role in the regulation of mesenchymal stem-cell lineage allocation by modulating PPAR-γ activity through nuclear translocation. These data illustrate a unique mechanism whereby a nutrient-responsive gene influences BMSCs differentiation, adipogenesis, and ultimately body composition

    Nocturnin Expression Is Induced by Fasting in the White Adipose Tissue of Restricted Fed Mice

    Get PDF
    The relationship between circadian clocks and metabolism is intimate and complex and a number of recent studies have begun to reveal previously unknown effects of food and its temporal availability on the clock and the rhythmic transcriptome of peripheral tissues. Nocturnin, a circadian deadenylase, is expressed rhythmically in a wide variety of tissues, but we report here that Nocturnin expression is arrhythmic in epididymal white adipose tissue (eWAT) of mice housed in 12∶12 LD with ad libitum access to food. However, Nocturnin expression becomes rhythmic in eWAT of mice placed on restricted feeding. We show here that Nocturnin's rhythmic expression pattern is not dependent upon feeding, nor is it acutely induced by feeding in the liver or eWAT of ad libitum fed mice. However, Nocturnin is acutely induced by the absence of the expected meal in eWAT of restricted fed mice. A rise in cAMP levels also induces Nocturnin expression, suggesting that Nocturnin's induction in eWAT by fasting is likely mediated through the same pathways that activate lipolysis. Therefore, this suggests that Nocturnin plays a role in linking nutrient sensing by the circadian clock to lipid mobilization in the adipocytes

    Search for Limiting Factors in the RNAi Pathway in Silkmoth Tissues and the Bm5 Cell Line: The RNA-Binding Proteins R2D2 and Translin

    Get PDF
    RNA interference (RNAi), an RNA-dependent gene silencing process that is initiated by double-stranded RNA (dsRNA) molecules, has been applied with variable success in lepidopteran insects, in contrast to the high efficiency achieved in the coleopteran Tribolium castaneum. To gain insight into the factors that determine the efficiency of RNAi, a survey was carried out to check the expression of factors that constitute the machinery of the small interfering RNA (siRNA) and microRNA (miRNA) pathways in different tissues and stages of the silkmoth, Bombyx mori. It was found that the dsRNA-binding protein R2D2, an essential component in the siRNA pathway in Drosophila, was expressed at minimal levels in silkmoth tissues. The silkmoth-derived Bm5 cell line was also deficient in expression of mRNA encoding full-length BmTranslin, an RNA-binding factor that has been shown to stimulate the efficiency of RNAi. However, despite the lack of expression of the RNA-binding proteins, silencing of a luciferase reporter gene was observed by co-transfection of luc dsRNA using a lipophilic reagent. In contrast, gene silencing was not detected when the cells were soaked in culture medium supplemented with dsRNA. The introduction of an expression construct for Tribolium R2D2 (TcR2D2) did not influence the potency of luc dsRNA to silence the luciferase reporter. Immunostaining experiments further showed that both TcR2D2 and BmTranslin accumulated at defined locations within the cytoplasm of transfected cells. Our results offer a first evaluation of the expression of the RNAi machinery in silkmoth tissues and Bm5 cells and provide evidence for a functional RNAi response to intracellular dsRNA in the absence of R2D2 and Translin. The failure of TcR2D2 to stimulate the intracellular RNAi pathway in Bombyx cells is discussed

    Comparative Genomic and Transcriptomic Characterization of the Toxigenic Marine Dinoflagellate Alexandrium ostenfeldii

    Get PDF
    Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins

    A water-based training program that include perturbation exercises to improve stepping responses in older adults: study protocol for a randomized controlled cross-over trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gait and balance impairments may increase the risk of falls, the leading cause of accidental death in the elderly population. Fall-related injuries constitute a serious public health problem associated with high costs for society as well as human suffering. A rapid step is the most important protective postural strategy, acting to recover equilibrium and prevent a fall from initiating. It can arise from large perturbations, but also frequently as a consequence of volitional movements. We propose to use a novel water-based training program which includes specific perturbation exercises that will target the stepping responses that could potentially have a profound effect in reducing risk of falling. We describe the water-based balance training program and a study protocol to evaluate its efficacy (Trial registration number #NCT00708136).</p> <p>Methods/Design</p> <p>The proposed water-based training program involves use of unpredictable, multi-directional perturbations in a group setting to evoke compensatory and volitional stepping responses. Perturbations are made by pushing slightly the subjects and by water turbulence, in 24 training sessions conducted over 12 weeks. Concurrent cognitive tasks during movement tasks are included. Principles of physical training and exercise including awareness, continuity, motivation, overload, periodicity, progression and specificity were used in the development of this novel program. Specific goals are to increase the speed of stepping responses and improve the postural control mechanism and physical functioning. A prospective, randomized, cross-over trial with concealed allocation, assessor blinding and intention-to-treat analysis will be performed to evaluate the efficacy of the water-based training program. A total of 36 community-dwelling adults (age 65–88) with no recent history of instability or falling will be assigned to either the perturbation-based training or a control group (no training). Voluntary step reaction times and postural stability using stabiliogram diffusion analysis will be tested before and after the 12 weeks of training.</p> <p>Discussion</p> <p>This study will determine whether a water-based balance training program that includes perturbation exercises, in a group setting, can improve speed of voluntary stepping responses and improve balance control. Results will help guide the development of more cost-effective interventions that can prevent the occurrence of falls in the elderly.</p

    Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial

    Get PDF
    Background Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects. Methods FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762. Findings Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months. Interpretation Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function. Funding UK Stroke Association and NIHR Health Technology Assessment Programme
    corecore