14,039 research outputs found
Thermal correlators of anyons in two dimensions
The anyon fields have trivial -commutator for not integer.
For integer the commutators become temperature-dependent operator
valued distributions. The -point functions do not factorize as for quasifree
states.Comment: 14 pages, LaTeX (misprints corrected, a reference added
Continuous quantum measurement with independent detector cross-correlations
We investigate the advantages of using two independent, linear detectors for
continuous quantum measurement. For single-shot quantum measurement, the
measurement is maximally efficient if the detectors are twins. For weak
continuous measurement, cross-correlations allow a violation of the
Korotkov-Averin bound for the detector's signal-to-noise ratio. A vanishing
noise background provides a nontrivial test of ideal independent quantum
detectors. We further investigate the correlations of non-commuting operators,
and consider possible deviations from the independent detector model for
mesoscopic conductors coupled by the screened Coulomb interaction.Comment: 4 pages, 2 figure
On second-order differential equations with highly oscillatory forcing terms
We present a method to compute efficiently solutions of systems of ordinary differential equations that possess highly oscillatory forcing terms. This approach is based on asymptotic expansions in inverse powers of the oscillatory parameter,and features two fundamental advantages with respect to standard ODE solvers: rstly, the construction of the numerical solution is more efficient when the system is highly oscillatory, and secondly, the cost of the computation is essentially independent of the oscillatory parameter. Numerical examples are provided, motivated by problems in electronic engineering
Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis
The paper presents a slope stability analysis for a heterogeneous earthen
levee in Boston, UK, which is prone to occasional slope failures under tidal
loads. Dynamic behavior of the levee under tidal fluctuations was simulated
using a finite element model of variably saturated linear elastic perfectly
plastic soil. Hydraulic conductivities of the soil strata have been calibrated
according to piezometers readings, in order to obtain correct range of
hydraulic loads in tidal mode. Finite element simulation was complemented with
series of limit equilibrium analyses. Stability analyses have shown that slope
failure occurs with the development of a circular slip surface located in the
soft clay layer. Both models (FEM and LEM) confirm that the least stable
hydraulic condition is the combination of the minimum river levels at low tide
with the maximal saturation of soil layers. FEM results indicate that in winter
time the levee is almost at its limit state, at the margin of safety (strength
reduction factor values are 1.03 and 1.04 for the low-tide and high-tide
phases, respectively); these results agree with real-life observations. The
stability analyses have been implemented as real-time components integrated
into the UrbanFlood early warning system for flood protection
Revisiting two-step Forbush decreases
Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique
We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness
An approach for assessing software prototypes
A procedure for evaluating a software prototype is presented. The need to assess the prototype itself arises from the use of prototyping to demonstrate the feasibility of a design or development stategy. The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system. The procedure consists of identifying evaluations criteria, defining alterative design approaches, and ranking the alternatives according to the criteria
- …