1,616 research outputs found
Tunis's New Mosques Constructed Between 1975 and 1995: Morphological Knowledge
The mosque has always been a prominent unit that used to structure the old Islamic cites. Its architecture through the Muslim world has always aroused the interest of many researchers. Actually, mosques are still built while undergoing the changes which occurred on the modern societies. However, only few research who have been interested in the new mosques. This paper targets the architecture of mosques built in Tunis governorate between 1975 and 1995. Through a morphological analysis of 24 mosques we were able to determine their identity and their morphological structure. According to their form and position, we discovered classes of specimen and classes of segments. Our corpus presents several constants and variations that we can explain though the introduction of some extrinsic attributes. In fact, these architectural objects possess some morphological specifications related to some urban, functional and historical factors
Nonlinear optical properties of selected natural pigments extracted from spinach: Carotenoids
They are report here, for the first time in authors knowledge, results on third order nonlinear optical susceptibilities from a series of natural pigments extracted from spinach. The measurements were performed in-situ at 532 nm wavelength using degenerate four wave mixing technique (DFWM). For comparison third order nonlinear optical susceptibilities of the same pigments were also evaluated using third harmonic generation (THG) set up at 1064 nm. The electronic contribution to the observed properties was also deduced. The measurements were performed on thin films deposited on a thick glass substrate. These pigments were also identified by UV–VIS spectral analysis. All these results were in good agreement with the literature data
Experimental Validation of Contact Dynamics for In-Hand Manipulation
This paper evaluates state-of-the-art contact models at predicting the
motions and forces involved in simple in-hand robotic manipulations. In
particular it focuses on three primitive actions --linear sliding, pivoting,
and rolling-- that involve contacts between a gripper, a rigid object, and
their environment. The evaluation is done through thousands of controlled
experiments designed to capture the motion of object and gripper, and all
contact forces and torques at 250Hz. We demonstrate that a contact modeling
approach based on Coulomb's friction law and maximum energy principle is
effective at reasoning about interaction to first order, but limited for making
accurate predictions. We attribute the major limitations to 1) the
non-uniqueness of force resolution inherent to grasps with multiple hard
contacts of complex geometries, 2) unmodeled dynamics due to contact
compliance, and 3) unmodeled geometries dueto manufacturing defects.Comment: International Symposium on Experimental Robotics, ISER 2016, Tokyo,
Japa
Synthesis of Some New 3-Pyrrolidinylquinoline Derivatives via 1,3-Dipolar Cycloaddition of Stabilized Azomethine Ylides to Quinolinyl α,β- Unsaturated Ketones
International audienceN-Metallated azomethine ylide generated from methyl (E)-N-benzylideneglycinate, LiBr and triethylamine underwent cycloaddition to quinolyl α,β- unsaturated ketones with excellent diastereoselectivity to afford new functionalised 3-pyrrolidinylquinoline derivatives
Second T = 3/2 state in B and the isobaric multiplet mass equation
Recent high-precision mass measurements and shell model calculations~[Phys.
Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation
for the requirement of a cubic isobaric multiplet mass equation for the lowest
isospin quartet. The conclusions relied upon the choice of the
excitation energy for the second state in B, which had two
conflicting measurements prior to this work. We remeasured the energy of the
state using the reaction and significantly disagree
with the most recent measurement. Our result supports the contention that
continuum coupling in the most proton-rich member of the quartet is not the
predominant reason for the large cubic term required for nuclei
Seismic risk in the city of Al Hoceima (north of Morocco) using the vulnerability index method, applied in Risk-UE project
The final publication is available at Springer via http://dx.doi.org/10.1007/s11069-016-2566-8Al Hoceima is one of the most seismic active regions in north of Morocco. It is demonstrated by the large seismic episodes reported in seismic catalogs and research studies. However, seismic risk is relatively high due to vulnerable buildings that are either old or don’t respect seismic standards. Our aim is to present a study about seismic risk and seismic scenarios for the city of Al Hoceima. The seismic vulnerability of the existing residential buildings was evaluated using the vulnerability index method (Risk-UE). It was chosen to be adapted and applied to the Moroccan constructions for its practicality and simple methodology. A visual inspection of 1102 buildings was carried out to assess the vulnerability factors. As for seismic hazard, it was evaluated in terms of macroseismic intensity for two scenarios (a deterministic and probabilistic scenario). The maps of seismic risk are represented by direct damage on buildings, damage to population and economic cost. According to the results, the main vulnerability index of the city is equal to 0.49 and the seismic risk is estimated as Slight (main damage grade equal to 0.9 for the deterministic scenario and 0.7 for the probabilistic scenario). However, Moderate to heavy damage is expected in areas located in the newer extensions, in both the east and west of the city. Important economic losses and damage to the population are expected in these areas as well. The maps elaborated can be a potential guide to the decision making in the field of seismic risk prevention and mitigation strategies in Al Hoceima.Peer ReviewedPostprint (author's final draft
Patterns in the Fermion Mixing Matrix, a bottom-up approach
We first obtain the most general and compact parametrization of the unitary
transformation diagonalizing any 3 by 3 hermitian matrix H, as a function of
its elements and eigenvalues. We then study a special class of fermion mass
matrices, defined by the requirement that all of the diagonalizing unitary
matrices (in the up, down, charged lepton and neutrino sectors) contain at
least one mixing angle much smaller than the other two. Our new parametrization
allows us to quickly extract information on the patterns and predictions
emerging from this scheme. In particular we find that the phase difference
between two elements of the two mass matrices (of the sector in question)
controls the generic size of one of the observable fermion mixing angles: i.e.
just fixing that particular phase difference will "predict" the generic value
of one of the mixing angles, irrespective of the value of anything else.Comment: 29 pages, 3 figures, references added, to appear in PR
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
Pre-hospital management protocols and perceived difficulty in diagnosing acute heart failure
Aim To illustrate the pre-hospital management arsenals and protocols in different EMS units, and to estimate the perceived difficulty of diagnosing suspected acute heart failure (AHF) compared with other common pre-hospital conditions. Methods and results A multinational survey included 104 emergency medical service (EMS) regions from 18 countries. Diagnostic and therapeutic arsenals related to AHF management were reported for each type of EMS unit. The prevalence and contents of management protocols for common medical conditions treated pre-hospitally was collected. The perceived difficulty of diagnosing AHF and other medical conditions by emergency medical dispatchers and EMS personnel was interrogated. Ultrasound devices and point-of-care testing were available in advanced life support and helicopter EMS units in fewer than 25% of EMS regions. AHF protocols were present in 80.8% of regions. Protocols for ST-elevation myocardial infarction, chest pain, and dyspnoea were present in 95.2, 80.8, and 76.0% of EMS regions, respectively. Protocolized diagnostic actions for AHF management included 12-lead electrocardiogram (92.1% of regions), ultrasound examination (16.0%), and point-of-care testings for troponin and BNP (6.0 and 3.5%). Therapeutic actions included supplementary oxygen (93.2%), non-invasive ventilation (80.7%), intravenous furosemide, opiates, nitroglycerine (69.0, 68.6, and 57.0%), and intubation 71.5%. Diagnosing suspected AHF was considered easy to moderate by EMS personnel and moderate to difficult by emergency medical dispatchers (without significant differences between de novo and decompensated heart failure). In both settings, diagnosis of suspected AHF was considered easier than pulmonary embolism and more difficult than ST-elevation myocardial infarction, asthma, and stroke. Conclusions The prevalence of AHF protocols is rather high but the contents seem to vary. Difficulty of diagnosing suspected AHF seems to be moderate compared with other pre-hospital conditions
Early results on the use of biomaterials as adjuvant to abdominal wall closure following cytoreduction and hyperthermic intraperitoneal chemotherapy
<p>Abstract</p> <p>Background</p> <p>Hyperthermic chemotherapy applies thermal energy to both abdominal wall as well as the intra-abdominal viscera. The combination of the hyperthemia, chemotherapy and cytoreductive surgery (CRS) is associated with a defined risk of abdominal wall and intestinal morbidity reported to be as high as 15%, respectively to date, no studies have evaluated the use of biomaterial mesh as adjuvant to abdominal wall closure in this group of patients. In the present report, we hypothesized that post HIPEC closure with a biomaterial can reduce abdominal wall morbidity after CRS and hyperthermic intraperitoneal chemotherapy.</p> <p>Materials and methods</p> <p>All patients treated with HIPEC in a tertiary care center over 12 months (2008-2009) period were included. Eight patients received cytoreductive surgery followed by HIPEC for 90 minutes using Mitomycin C (15 mg q 45 minutes × 2). Abdominal wall closure was performed using Surgisis (Cook Biotech.) mesh in an underlay position with 3 cm fascial overlap-closure. Operative time, hospital length of stay (LOS) as well as postoperative outcome with special attention to abdominal wall and bowel morbidity were assessed.</p> <p>Results</p> <p>Eight patients, mean age 59.7 ys (36-80) were treated according to the above protocol. The primary pathology was appendiceal mucinous adenocarcinoma (n = 3) colorectal cancer (n = 3), and ovarian cancer (n = 2). Four patients (50%) presented initially with abdominal wall morbidity including incisional ventral hernia (n = 3) and excessive abdominal wall metastatic implants (n = 1). The mean peritoneal cancer index (PCI) was 8.75. Twenty eight CRS were performed (3.5 CRS/patient). The mean operating time was 6 hours. Seven patients had no abdominal wall or bowel morbidity, the mean LOS for these patients was 8 days. During the follow up period (mean 6.3 months), one patient required exploratory laparotomy 2 weeks after surgery and subsequently developed an incisional hernia and enterocutaneous fistula.</p> <p>Conclusion</p> <p>The use of biomaterial mesh in concert with HIPEC enables the repair of concomitant abdominal wall hernia and facilitates abdominal wall closure following the liberal resection of abdominal wall tumors. Biomaterial mesh prevents evisceration on repeat laparotomy and resists infection in immunocompromised patients even when associated with bowel resection.</p
- …
