562 research outputs found

    Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF

    Get PDF
    Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality and reduced material removal rate. This undesired self-excited vibration problem is one of the main obstacles in utilizing the total capacity of a machine tool in production. In order to obtain a chatter-free process on a machining center, stability diagrams can be used. Numerically or analytically, constructing the stability lobe diagram for a certain spindleholdertool combination implies knowing the system dynamics at the tool tip; i.e., the point frequency response function (FRF) that relates the dynamic displacement and force at that point. This study presents an analytical method that uses Timoshenko beam theory for calculating the tool point FRF of a given combination by using the receptance coupling and structural modication methods. The objective of the study is two fold. Firstly, it is aimed to develop a reliable mathematical model to predict tool point FRF in a machining center so that chatter stability analysis can be done, and secondly to make use of this model in studying the effects of individual bearing and contact parameters on tool point FRF so that better approaches can be found in predicting contact parameters from experimental measurements. The model can also be used to study the effects of several spindle, holder and tool parameters on chatter stability. In this paper, the mathematical model, as well as the details of obtaining the system component (spindle, holder and tool) dynamics and coupling them to obtain the tool point FRF are given. The model suggested is veried by comparing the natural frequencies of an example spindleholdertool assembly obtained from the model with those obtained from a nite element software

    Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle-tool assemblies

    Get PDF
    Self-excited vibration of the tool, regenerative chatter, can be predicted and eliminated if the stability lobe diagram of the spindle–holder–tool assembly is known. Regardless of the approach being used, analytically or numerically, forming the stability lobe diagram of an assembly implies knowing the point frequency response function (FRF) in receptance form at the tool tip. In this paper, it is aimed to study the effects of spindle–holder and holder–tool interface dynamics, as well as the effects of individual bearings on the tool point FRF by using an analytical model recently developed by the authors for predicting the tool point FRF of spindle–holder–tool assemblies. It is observed that bearing dynamics control the rigid body modes of the assembly, whereas, spindle–holder interface dynamics mainly affects the first elastic mode, while holder–tool interface dynamics alters the second elastic mode. Individual bearing and interface translational stiffness and damping values control the natural frequency and the peak of their relevant modes, respectively. It is also observed that variations in the values of rotational contact parameters do not affect the resulting FRF considerably, from which it is concluded that rotational contact parameters of both interfaces are not as crucial as the translational ones and therefore average values can successfully be used to represent their effects. These observations are obtained for the bearing and interface parameters taken from recent literature, and will be valid for similar assemblies. Based on the effect analysis carried out, a systematic approach is suggested for identifying bearing and interface contact parameters from experimental measurements

    Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters.

    No full text
    Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle

    Correlation functions of boundary field theory from bulk Green's functions and phases in the boundary theory

    Get PDF
    In the context of the bulk-boundary correspondence we study the correlation functions arising on a boundary for different types of boundary conditions. The most general condition is the mixed one interpolating between the Neumann and Dirichlet conditions. We obtain the general expressions for the correlators on a boundary in terms of Green's function in the bulk for the Dirichlet, Neumann and mixed boundary conditions and establish the relations between the correlation functions. As an instructive example we explicitly obtain the boundary correlators corresponding to the mixed condition on a plane boundary RdR^d of a domain in flat space Rd+1R^{d+1}. The phases of the boundary theory with correlators of the Neumann and Dirichlet types are determined. The boundary correlation functions on sphere SdS^d are calculated for the Dirichlet and Neumann conditions in two important cases: when sphere is a boundary of a domain in flat space Rd+1R^{d+1} and when it is a boundary at infinity of Anti-De Sitter space AdSd+1AdS_{d+1}. For massless in the bulk theory the Neumann correlator on the boundary of AdS space is shown to have universal logarithmic behavior in all AdS spaces. In the massive case it is found to be finite at the coinciding points. We argue that the Neumann correlator may have a dual two-dimensional description. The structure of the correlators obtained, their conformal nature and some recurrent relations are analyzed. We identify the Dirichlet and Neumann phases living on the boundary of AdS space and discuss their evolution when the location of the boundary changes from infinity to the center of the AdS space.Comment: 32 pages, latex, no figure

    Multipartite minimum uncertainty products

    Full text link
    In our previous work we have found a lower bound for the multipartite uncertainty product of the position and momentum observables over all separable states. In this work we are trying to minimize this uncertainty product over a broader class of states to find the fundamental limits imposed by nature on the observable quantites. We show that it is necessary to consider pure states only and find the infimum of the uncertainty product over a special class of pure states (states with spherically symmetric wave functions). It is shown that this infimum is not attained. We also explicitly construct a parametrized family of states that approaches the infimum by varying the parameter. Since the constructed states beat the lower bound for separable states, they are entangled. We thus show that there is a gap that separates the values of a simple measurable quantity for separable states from entangled ones and we also try to find the size of this gap.Comment: 18 pages, 5 figure

    MR-Eye:High-Resolution Microscopy Coil MRI for the Assessment of the Orbit and Periorbital Structures, Part 2: Clinical Applications

    Get PDF
    In the first part of this 2-part series, we described how to implement microscopy coil MR imaging of the orbits. Beyond being a useful anatomic educational tool, microscopy coil MR imaging has valuable applications in clinical practice. By depicting deep tissue tumor extension, which cannot be evaluated clinically, ophthalmic surgeons can minimize the surgical field, preserve normal anatomy when possible, and maximize the accuracy of resection margins. Here we demonstrate common and uncommon pathologies that may be encountered in orbital microscopy coil MR imaging practice and discuss the imaging appearance, the underlying pathologic processes, and the clinical relevance of the microscopy coil MR imaging findings.</p

    Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF

    Get PDF
    Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality and reduced material removal rate. This undesired self-excited vibration problem is one of the main obstacles in utilizing the total capacity of a machine tool in production. In order to obtain a chatter-free process on a machining center, stability diagrams can be used. Numerically or analytically, constructing the stability lobe diagram for a certain spindle-holder-tool combination implies knowing the system dynamics at the tool tip; i.e., the point frequency response function (FRF) that relates the dynamic displacement and force at that point. This study presents an analytical method that uses Timoshenko beam theory for calculating the tool point FRF of a given combination by using the receptance coupling and structural modification methods. The objective of the study is two fold. Firstly, it is aimed to develop a reliable mathematical model to predict tool point FRF in a machining center so that chatter stability analysis can be done, and secondly to make use of this model in studying the effects of individual bearing and contact parameters on tool point FRF so that better approaches can be found in predicting contact parameters from experimental measurements. The model can also be used to study the effects of several spindle, holder and tool parameters on chatter stability. In this paper, the mathematical model, as well as the details of obtaining the system component (spindle, holder and tool) dynamics and coupling them to obtain the tool point FRF are given. The model suggested is verified by comparing the natural frequencies of an example spindle-holder-tool assembly obtained from the model with those obtained from a finite element software

    Artificial neural network modeling and simulation of in-vitro nanoparticle-cell interactions

    Get PDF
    In this research a prediction model for the cellular uptake efficiency of nanoparticles (NPs), which is the rate that NPs adhere to a cell surface or enter a cell, is investigated via an artificial neural network (ANN) method. An appropriate mathematical model for the prediction of the cellular uptake rate of NPs will significantly reduce the number of time-consuming experiments to determine which of the thousands of possible variables have an impact on NP uptake rate. Moreover, this study constitutes a basis for targeted drug delivery and cell-level detection, treatment and diagnosis of existing pathologies through simulating NP-cell interactions. Accordingly, this study will accelerate nanomedicine research. Our research focuses on building a proper ANN model based on a multilayered feed-forward back-propagation algorithm that depends on NP type, size, surface charge, concentration and time for prediction of cellular uptake efficiency. The NP types for in-vitro NP-healthy cell interaction analysis are polymethyl methacrylate (PMMA), silica and polylactic acid (PLA), all of whose shapes are spheres. The proposed ANN model has been developed on MATLAB Programming Language by optimizing a number of hidden layers (HLs), node numbers and training functions. The datasets are obtained from in-vitro NP-cell interaction experiments conducted by Nanomedicine and Advanced Technology Research Center. The dispersion characteristics and cell interactions with different NPs in organisms are explored using an optimal ANN prediction model. Simulating the possible interactions of targeted NPs with cells via an ANN model will be faster and cheaper compared to the excessive experimentation currently necessary. Copyright © 2014 American Scientific Publishers All rights reserved

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    A microsatellite marker for yellow rust resistance in wheat

    Get PDF
    Bulk segregant analysis (BSA) was used to identify molecular markers associated with yellow rust disease resistance in wheat (Triticum aestivum L.). DNAs isolated from the selected yellow rust tolerant and susceptible F-2 individuals derived from a cross between yellow rust resistant and susceptible wheat genotypes were used to established a "tolerant" and a "susceptible" DNA pool. The BSA was then performed on these DNA pools using 230 markers that were previously mapped onto the individual wheat chromosomes. One of the SSR markers (Xgwm382) located on chromosome group 2 (A, B, D genomes) was present in the resistant parent and the resistant bulk but not in the susceptible parent and the susceptible bulk, suggesting that this marker is linked to a yellow rust resistance gene. The presence of Xgwm382 was also tested in 108 additional wheat genotypes differing in yellow rust resistance. This analysis showed that 81% of the wheat genotypes known to be yellow rust resistant had the Xgwm382 marker, further suggesting that the presence of this marker correlates with yellow rust resistance in diverse wheat germplasm. Therefore, Xgwm382 could be useful for marker assisted selection of yellow rust resistances genotypes in wheat breeding programs
    • …
    corecore