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In this research a prediction model for the cellular uptake efficiency of nanoparticles (NPs), which
is the rate that NPs adhere to a cell surface or enter a cell, is investigated via an artificial neu-
ral network (ANN) method. An appropriate mathematical model for the prediction of the cellular
uptake rate of NPs will significantly reduce the number of time-consuming experiments to deter-
mine which of the thousands of possible variables have an impact on NP uptake rate. Moreover,
this study constitutes a basis for targeted drug delivery and cell-level detection, treatment and diag-
nosis of existing pathologies through simulating NP-cell interactions. Accordingly, this study will
accelerate nanomedicine research. Our research focuses on building a proper ANN model based
on a multilayered feed-forward back-propagation algorithm that depends on NP type, size, surface
charge, concentration and time for prediction of cellular uptake efficiency. The NP types for in-vitro
NP-healthy cell interaction analysis are polymethyl methacrylate (PMMA), silica and polylactic acid
(PLA), all of whose shapes are spheres. The proposed ANN model has been developed on MATLAB
Programming Language by optimizing a number of hidden layers (HLs), node numbers and train-
ing functions. The datasets are obtained from in-vitro NP-cell interaction experiments conducted by
Nanomedicine and Advanced Technology Research Center. The dispersion characteristics and cell
interactions with different NPs in organisms are explored using an optimal ANN prediction model.
Simulating the possible interactions of targeted NPs with cells via an ANN model will be faster and
cheaper compared to the excessive experimentation currently necessary.
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1. INTRODUCTION

This research aims to predict the cellular uptake rate of
NPs through an appropriate ANN model using a limited
number of NP-cell interaction data obtained from in-vitro
experiments. NP-cell interaction is simulated for a 48-hour
incubation period to obtain a cellular uptake rate using
an optimized ANN prediction model. The proposed model
can be used for NP characterization and specification of
the desired cellular uptake efficiency without needing to
conduct numerous experiments. Hence, the results of this
research advance NPs synthesis and characterization for
targeted drug delivery, diagnosis and imaging systems.
The dispersion characteristics and cell interactions of
NPs in organisms are fundamental and must be investi-
gated in targeted drug delivery research.! Nanoparticles
with specialized agents are used especially for cell-level
detection, treatment and diagnosis of existing pathologies.
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Research activities for treatment and diagnostic purposes
have recently become more prevalent, because mortality
has dramatically increased due to pathologies such as can-
cer. According to the World Cancer Report the burden of
cancer doubled globally between 1975 and 2000, is pre-
dicted to double again by 2020 and nearly triple by 2030.2
Current methods of diagnosis and treatment for cancer
have been evolving through emerging technologies such as
nanotechnology. Targeted delivery, diagnostic and imaging
systems and regenerative medicine and tissue engineering
are important research and development areas related to
nanotechnology and biotechnology.’

The latest diagnostic imaging practices aim to develop
NPs that can carry specific contrast material to be tar-
geted and directed from outside the body. Current research
focusing on targeted drug delivery combines NPs with
pharmacological agents. NPs are characterized accord-
ing to targeted tissues. Understanding NP-cell interac-
tions is very important for targeted drug delivery and
nanomedicine research. But, it is practically impossible to
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test all the possible combinations of NP characteristics to
be able to understand and generalize the effects of nano-
materials on biological systems. Our research develops an
ANN model that can simulate experimental results for any
desired setup, thus eliminates time-consuming and costly
experiments.

The primary contribution of our study is to the area
of nanomedicine, by developing an ANN model to pre-
dict NP uptake rate. Furthermore, we simulate cellular
uptakes of NPs for multiple variations of NP characteriza-
tion to be able to understand NP-cell interactions without
needing to conduct thousands of experiments. The sec-
ond major contribution is to the field of ANN, by testing
various feed-forward multilayered ANN models with dif-
ferent training algorithms and network structures. Specifi-
cally, this study demonstrates that an optimal ANN model
is achieved using a Bayesian regularization training algo-
rithm with a single hidden-layer structure, especially for
small-sized datasets.

The remainder of the study is organized as follows:
The importance and necessity of modeling the cellular
uptake rate is discussed in Section 2. The relevant litera-
ture is reviewed in Section 3. The experimental procedure
is laid out in Section 4 and the proposed ANN model in
Section 5. The results of the computational experiments
are given in Sections 6 and 7.

2. MODELING CELLULAR UPTAKE

The cellular uptake rate depends on variables such as NP
size, chemical structure, shape, surface charge and NP con-
centration (NPs per cubic milliliter). Considering the thou-
sands of different values of those variables, it is impossible
to conduct all the necessary experiments to obtain all NP-
cell interaction data within the limited scope of current NP
production and experimentation. Even if it is technically
feasible to produce all the required NPs, it is impractical
and/or too costly to conduct all experiments in laboratory
conditions. The only viable alternative is to mathematically
model the complex relations between cells and NPs.

Artificial neural network models are often preferred
over other mathematical models because they are more
powerful for solving nonlinear complex problems. Paliwal
et al. highlight the superiority of ANNs for prediction
problems.* Out of 96 comparative studies, ANN performed
better than the others in 56 cases and at least as well as
the others in 23 cases.

Nonlinear NP-cell relationships must be accurately gen-
eralized by constructing and implementing a proper ANN
model. Determining appropriate parameters, functions and
structures of the network is essential to obtaining an
optimal ANN model. We built an ANN method based
on a multilayered feed-forward back-propagation algo-
rithm to predict the cellular uptake rate of NPs, which
depends on NP type, size, surface charge, concentra-
tion and time. We implemented the ANN algorithm
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in MATLAB Programming Language and obtained the
data from in-vitro nanoparticle-cell interaction experiments
conducted by Nanomedicine and Advanced Technology
Research Center.’

3. LITERATURE

There are many experimental studies in the literature on
the cellular uptake rate of NPs. Nanoparticles with differ-
ent characteristics are experimented with to analyze the
effects of NP features such as size, chemical structure,
shape, surface charge and concentration. However, math-
ematical models of NP-cell interactions based on experi-
mental data are rare.

Boso et al. conducted parallel-plate flow-chamber
in-vitro experiments and used two different ANN mod-
els to predict the number of spherical NPs adhering per
unit area as a function of particle diameter and wall shear
rate depending on syringe pump flow rate.® Nateri et al.
observed that ANNs technique performs better than the
conventional regression method and is suitable for the
simulation of the size of silver nanoparticles synthesized
through Tollens process.” Wang et al. presented a theoret-
ical modeling on the optical and temperature fields during
gold nanoshells through combining the Monte-Carlo sim-
ulation strategy and effects of size, concentration of the
nanoshells to the heating behaviors were evaluated.® Lin
et al. performed coarse-grained molecular dynamics sim-
ulations aimed at nanoparticle’s size effect on its translo-
cation across a lipid bilayer and found that the size of NP
has significant impacts on its translocation across the lipid
bilayer.’

Rizkalla and Hildgen employed two commercial ANN
models to predict mean size and micropore surface area
(MPSA) of polylactic acid (PLA) nanoparticles according
to polymer concentration, pressure and polyvinyl alcohol
(PVA) concentration.'® Amani et al. performed experi-
ments to explore the effect of composition and process-
ing factors on particle size of a nanoemulsion preparation
for the delivery of fluid drugs.!! In these studies they do
not consider other properties of NPs, such as type, shape,
charge and concentration.

In the last decade, NP-cell interactions have been exam-
ined to better understand the relationships between two or
three variables only; the remaining NP features and envi-
ronmental specifications were kept constant. Asati et al.
performed experiments to determine the cellular uptake
and intracellular localization of polymer-coated cerium
oxide NPs with respect to surface charges.'”> Peetla and
Labhasetwar used polystyrene NPs of different surface
charges and sizes to analyze changes in the cell mem-
brane’s surface pressure (SP).!* Chithrani et al. investi-
gated the impact of different sizes and shapes of gold
NPs on intracellular uptake in mammalian cells."* Davda
and Labhasetwar observed that the cellular uptake of NPs
depends on the time of incubation and that it increased
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with increasing NP concentration in the medium.!® They
concluded that NP uptakes into cells show large varia-
tions with changing NP size, surface charge, concentra-
tion and measurement times. In all these studies, NP-cell
interactions are examined only through physical experi-
mentations, i.e., without any mathematical model. In this
context, our study can be viewed as a first step toward
mathematical modeling of NP-cell interactions.

Although nanomedicine is a new discipline, applications
of ANN are common in medicine; for example, in clinical
diagnosis, image analysis and interpretation, signal analy-
sis and interpretation and drug development.'® An artificial
neural network methodology mostly enhances the qual-
ity of research. A systematic review assessed the benefit
of ANNs as decision-making tools in the field of cancer.
Of the 27 out of 396 studies that were clinical trials or ran-
domized controlled trials, 21 showed an increase in benefit
to healthcare provision and six did not.!” Ahmed’s review
showed that applications of ANNs have improved the
accuracy of colon cancer classification and survival predic-
tion compared to other mathematical or clinicopathological
methods.'® As a result, ANN appears to be an appropriate
approach for modeling complex input-output relationships
in medicine.

4. EXPERIMENTAL PROCEDURE

Synthesizing NPs for targeted drug delivery and detecting
existing pathologies at the cell level requires special exper-
tise and advanced technology. Synthesized NPs should be
characterized according to the targeted cell/tissue so the
NPs can find and adhere to the target cell/tissue in the
chaotic environment of an organism. Nanoparticles used
for cell-level treatment and diagnostic purposes have five
key characteristics: size, chemical structure (type), shape,
surface charge and concentration.

To ensure the chemical composition, size, zeta poten-
tial, concentration and homogeneity standardization of the
NPs, we obtained them from Micromod Partikeltechnolo-
gie, which produces NPs according to ISO 9001:2008 and
EN ISO 13485:2003/AC2007 standards.

Considering technological constraints and scientific pri-
orities, three types of NPs were prepared for our in-vitro
nanoparticle-healthy cell (3T3 Swiss albino Mouse Fibrob-
last) interaction experiments: polymethyl methacrylate
(PMMA), silica and PLA. For the PMMA and silica NPs,
diameters of 50 nm and 100 nm are preferred; for the
PLAs, a 250 nm diameter is preferred. Two different sur-
face charges (positive and negative) were formed for each
type of NP that are all sphere shaped. Low and high con-
centrations of NPs (respectively, 0.001 mg/l and 0.01 mg/1)
were interacted with healthy cells.

We used transmission electron microscopy (TEM) to
determine the size and size distribution of NPs inside and
over the surface of the cells; surface charges were deter-
mined by zeta potential measurements. The nanoparticles
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were subjected to interact with cells in vitro using micro-
manipulation systems in labs. Spectrophotometric mea-
surement methods, TEM and confocal microscopy were
applied to observe NP-cell interactions and to obtain
the data. Cells were incubated in a medium containing
10% FBS, 2 mm L-glutamine, 100 IU/ml penicillin and
100 mg/ml streptomycin at 37 °C with 5% CO,. After
incubation, proliferating cells in the culture flask were pas-
saged using PBS and a trypsin-EDTA solution. Then, cells
were incubated for 24 hours, counted, and placed on 96-
well cell culture plates. Next, previously prepared solu-
tions containing specific concentrations of NPs were added
to those plates.

The cellular uptake rates of the NPs were measured at
three, six, 12, 24, 36 and 48 hours of incubation. The
experiments were repeated six times for each of 20 dif-
ferent configurations of nanoparticles. At the end of the
incubation period, the number of NPs left in the environ-
ment was determined with washing solution.

5. PROPOSED MODEL

The proposed model is a multilayer feed-forward net-
work, and the training process is performed with a back-
propagation algorithm. The network consists of an input
layer with five nodes, one hidden layer (HL) with n nodes
and one output layer with one node. The values of the
input variables are given in Figure 1. The output of the pro-
posed ANN model is the cellular uptake rate of the NPs,
which is the only dependent variable of the experiments.
The uptake rate is the ratio of NPs on the cell surfaces or
inside the cells to the total number of applied NPs.

We use the The Tan-sigmoid (tansig) transfer function
for the HLs and saturated linear (satlin) transfer function
for the output layer. The tansig and satlin transfer functions
are given by

f(x) =

—1 and

Fig. 1. ANN architecture.
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0 ifx<O
f(x)=1x, ifO<x<l

1 x>1

respectively.

The dataset is divided randomly into training and test
datasets. The training dataset is used to fit the neural net-
works model. The test dataset is used after the training
dataset to evaluate the model’s performance. An unbiased
estimate of the generalization error of the model is pro-
vided by the error on the test dataset. This simple valida-
tion method is known as test set validation.

Data allocation between the training and test datasets is
important, because our experimental dataset is small. There
are 20 different combinations of input variables, and we
conducted six experiments for each combination. Increas-
ing the class imbalance in the training dataset generally
gives a gradually unfavorable result on the test performance
for small- and moderate-sized training datasets.”” One ran-
domly selected sample is used for the test dataset, and the
remaining five samples are used for training for each differ-
ent combination of input variables. This method is called
split-sample cross validation. In this manner, 196 samples
are allocated for testing from a total of 1176 samples.

5.1. Training Parameters

Mean squared error (MSE) is used as the network per-
formance function during the training process. The per-
formances of 14 different training functions are measured
in terms of MSE and execution time. Training function
performance is tested with three different layer structures:
5-5-1, 5-10-1 and 5-15-1. The first number in each group
is the input node number, the second number represents
the number of nodes in the HL and the last number is the
output of the network. In terms of minimum MSE over the
test dataset and minimum amount of training time, the best
training function is the Bayesian regularization (trainbr),
which adjusts the weight and bias values according to the
Levenberg-Marquardt optimization method.

5.2. The Number of Hidden Layers and
Number of Neurons

It is argued that determining the optimal number of hidden
neurons is impossible because the process depends on too
many variables (e.g., numbers of input and output units,
complexity of the problem, number of training iterations,
amount of noise in the data, architecture of the network,
training algorithm).?! Thus, various research articles pro-
pose different rules for deciding on the optimal number of
hidden neurons. The best network structure, the number of
HLs and neurons are generally obtained by trial and error.

Feed-forward networks can learn complex relationships
more quickly if the network has more than one HL. Haykin
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Fig. 2. The MSE of one-layer ANN models.

proposed that at most two HLs are sufficient to model
every ANN problem.?? In our study, we tested one and two
HLs with different numbers of nodes that makes a total of
420 different ANN structures. The performance achieved
by two HLs is comparable with one hidden layer with
more than 18 neurons. We prefer a single hidden layer
because computation time increases with the number of
hidden layers.

Figure 2 shows the MSE of the networks with different
node numbers. According to these results, increasing the
number of nodes sharply decreases MSE. It is seen that
five nodes or fewer result in under-fitting. When more than
12 nodes are used in the hidden layer over-fitting occurs.
Therefore, the best number of nodes on the hidden layer
turns out to be 12.

6. SIMULATION RESULTS

The NP uptake rate is simulated for 48 hours via an opti-
mized ANN model. The proposed ANN model has a 5-12-1
network structure and implements a Bayesian regulariza-
tion training algorithm. The predicted values of the NP
uptake rate are shown in 20 different charts for each combi-
nation of NP characteristics. Simulation runs were repeated
50 times for each combination and the best of 50 fits were
chosen as the final mode fit. The mean uptake rates of these
50 simulated samples are plotted as black straight lines
in Figures 6-10. The 95% confidence bounds, plotted as
dashed lines, are calculated with +20 (standard devia-
tions) of the simulated 50 samples for each hour from 1
to 48. The prediction intervals are seen between upper and
lower dashed lines. Data from the experiments are plotted
as o-marks.

The prediction intervals are short at the hours when
observations are made. However, prediction intervals are
long at the hours when no observations are made. All
observations of PLA NPs remain within the 95% confi-
dence bounds, but too few observations are out of confi-
dence bounds for PMMA and silica.

After adding NPs to the cell lines, cell adhesion and
entry is rapidly realized in the first three hours. Although
the overall behavior of NP uptake varies according to NP
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Fig. 7. PMMA simulation (Concentration: 1/100 mg/1).

characteristics, the general behaviors are similar across all
the figures. At the beginning of the incubation period, there
is a rapid entry of NPs into the cells. After a while, the
NP uptake rate decreases, and then again increases, and
continues to fluctuate in this fashion.

The mean levels and prediction intervals for the
uptake rates of the PMMA nanoparticles are displayed in
Figures 6 and 7. When size and concentration are constant,
negatively charged NPs have short prediction intervals of
hourly uptake rates. When negatively charged PMMA NPs
are compared in terms of concentration with constant NP
size, the high concentration (1/100) has shorter prediction
intervals, which give more-stable uptake rate results than
the low concentration (1/1000).

Hypothesis testing for the difference between two means
is applied to understand the effect of 50 and 100 nm
sizes for negatively charged PMMAs. For each hour from
one to 48, we calculated mean and standard deviations
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of 50 samples. The central limit theorem states that the
sampling distribution of a statistic will be approximately
normal if the sample size is greater than 40. Thus, each
sample is an independent simple random sampling with
approximately normal distribution. A two-sample ¢-test is
appropriate to determine whether the difference between
means found in the sample is significantly different from
the hypothesized difference between means.

Null hypothesis: effects of 50 and 100 nm sizes are the
same.

Alternative hypothesis: effects of 50 and 100 nm sizes
are different.

When the null hypothesis states that there is no dif-
ference between the two population means, the null and
alternative hypotheses are stated as H,: w; = u, and H:
My F# M, respectively.

The significance level is 95% for this analysis. The
degree of freedom (DF) is n — 1 = 49.
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Standard  error is  computed as SE =
J (o2 /n)+ (d}/n,) and the t-score test statistic as
t =[(w; —m,) —d]/SE, where w, is the mean of Sam-
ple 1, w, is the mean of Sample 2, d is the hypothesized
difference between population means (d = 0 for this
case), o, is the standard deviation of Sample 1, o, is the
standard deviation of Sample 2, n, is the size of Sample 1
and n, is the size of Sample 2.

The null hypothesis is rejected when the p-value is less
than the significance level. Based on the two-sample #-test
statistic and the DF, the p-value is determined. Since we
have a two-tailed test, the p-value is the probability that
a t-ratio having 49 degrees of freedom is greater than
2.01 or less than —2.01. The significance level is 0.05;
P(t < —=2.01) =0.025 and P(r > 2.01) = 0.025. In order
to have a p-value lower than the significance level (0.05),
the z-score should be less than —2.01 or greater than 2.01.
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In other words, we fail to reject the null hypothesis if the
t-score is between —2.01 and 2.01.

Figures 3—5 show p-values for the PMMA, silica and
PLA nanoparticles, respectively. For each factor (in the
order of size, charge, density), L and H stand for the low
level (50 for size, — for charge, 0.001 for density) and high
level (100 for size, + for charge, 0.01 for density) of the
factor, respectively. A “” in place of a factor means that
the p-value of the r-test for the absolute difference of the
mean responses for the corresponding factor is calculated,
while the other factors are fixed at their respective levels.
p-values are plotted on the log scale on the vertical axis.

In Figure 3, the p-value is sometimes lower than the
significance level and sometimes higher or the same for
(—) charged low-concentration PMMA NPs. There is no
clear difference between 50 nm and 100 nm sizes. In (—)
charged high-concentration cases, the p-values are less
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Fig. 8. Silica simulation (Concentration: 1/1000 mg/1).
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Fig. 9. Silica simulation (Concentration: 1/100 mg/l).

than 10~¢ and ¢-scores are more than 2.01, hence the null
hypothesis is rejected; this shows that the 50 nm size
leads to a high uptake rate. According to these results, (—)
charged, 50 nm and the higher-concentrated PMMA NPs
are more stable and give higher uptake rate results in a
targeted distribution system.

The mean levels and prediction intervals for the uptake
rates of the silica NPs are given in Figures 8 and 9. We
conducted the two-sample z-test (which involves the same
procedure as described above for PMMA) for the differ-
ence between 50 and 100 nm sizes of silica NPs. The
null hypothesis is rejected for the 0.001 and 0.01 con-
centrations of (—) charged NPs because the 100 nm size
leads to a high uptake rate and the p-values are lower than
the significance level (0.05). For (4) charged NPs of 0.01
concentration the f-scores are always more than 2.01; this
means that the 50 nm size leads to a high uptake rate.
However, as seen in Figure 4, there is no clear difference
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between the effect of 50 and 100 nm sizes for (+) charged
NPs in 0.001 concentrations because the null test was
rejected for some hours and failed to reject for the other
hours.

Based on the standard deviation of mean uptake rates
of hours for the silica NPs, the negative charge provides
a slightly more stable uptake rate with shorter prediction
intervals when the other variables are constant. Consider-
ing only the concentration change, the high concentration
is slightly more stable and has a higher uptake rate.

It is also evident from the simulation charts that uptake
rates in the high concentration (1/100) are larger than in
the low concentration (1/1000) with constant NP size and
NP charge. If the NP concentration is low, the uptake rate
rapidly and decisively decreases soon after. One can also
observe that silica shows fewer fluctuations than PMMA.

The mean levels and prediction intervals for the uptake
rates of the PLA NPs of 250 nm (the only size for PLA)

J. Comput. Theor. Nanosci. 11, 272-282, 2014
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Fig. 10. PLA simulation.

are given in Figure 10. Uptake rates of PLA NPs in the
high concentration (1/100) are larger than in the low con-
centration (1/1000). To prove this, a z-test is applied for
the difference between the means of uptake rates in low
and high concentrations for both charges. Results show
that the z-scores are always lower than —2.01; this means
that the high concentration leads to high uptake rates for
(=) and (+) charged PLA NPs (Fig. 5).

We conducted a two-sample #-test to analyze the effect
of charge difference on the PLA uptake rate. We fail to
reject the null hypothesis that the negative and positive
charges have equal impact. For the low concentration the
null hypothesis is mostly accepted. As a result, there is
no significant difference between the negative and positive
charges. The (+) charged PLA NPs in low concentration
have the smallest standard deviation of mean uptake rates,
which leads to a slightly more stable, but slow, uptake rate.

J. Comput. Theor. Nanosci. 11, 272-282, 2014

Although PLA shows fewer fluctuations than PMMA
and more fluctuations than silica, there is no significant
difference in the PLA nor silica results compared to the
PMMA simulation results. Size and concentration impacts
on uptake rate show similar results, but a marked dif-
ference between PLA and silica is realized in the sur-
face charge. To generalize these results more accurately,
it would be necessary to repeat the experiments with a
wide range of NP sizes and concentrations.

7. CONCLUSION

We investigate nanoparticle-cell interactions for targeted
drug delivery systems in the treatment of many diseases,
including cancer. The main objective of this treatment
method is to develop nanoparticle structures such that they
go directly to the targeted cells, release the therapeutic
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agent and are discarded from the body with no toxic
effects. In this manner, highly efficient treatment can be
provided with fewer drug doses and systemic side effects.

Many factors affect the rate of NPs adhering to the
cell surface and entering the cell, such as concentration of
NPs, surface charge, chemical structure, shape and size.
To determine the ideal structure for nanoparticle charac-
terization, NP-cell interactions must be understood. All
possible NP variations cannot be tested experimentally,
so devising a mathematical model for this purpose was
essential. Such a modeling study is currently not present
in the literature; hence our contribution.

This study develops an ANN model to predict cellu-
lar NP uptake rate. We tested several feed-forward multi-
layered ANN models with 14 different back-propagation
training algorithms and network structures with up to two
hidden layers and 20 hidden nodes. Our proposed ANN
model uses the Bayesian regularization training algorithm
with a single hidden layer and 12 hidden nodes.

To understand NP-cell interaction, we simulated our
ANN model for 48 hours to estimate the uptake of dif-
ferent NP classifications. Uptake rates change mainly
depending on the type of NP. Silica NPs show fewer
fluctuations in uptake rate than PMMA and PLA NPs.
Negatively charged NPs have more stable uptake rates than
positively charged NPs. A negative surface charge espe-
cially produces more stable the uptake rate of PMMA
nanoparticles. Uptake rates of PLA and silica NPs are
higher in a high concentration (1/100) than in a low con-
centration (1/1000). There are no general findings for the
effect on uptake rate of 50 or 100 nm NPs.

In future work, prediction of NP uptake rate could be
modeled by other statistical methods, such as multi-linear
regression models, additive mix models or support vector
machines. Moreover, the results of other statistical mod-
els should be compared and combined with the current
study. We tested our proposed ANN model with only
in-vitro experiment data. In-vivo tissue experiments should
be conducted at the level of tissues and organs. In addi-
tion, similar experiments should be repeated in different

282

Cenk et al.

pathological cells and modeled with ANN and/or other
statistical tools.
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