24 research outputs found

    Correlation functions of boundary field theory from bulk Green's functions and phases in the boundary theory

    Get PDF
    In the context of the bulk-boundary correspondence we study the correlation functions arising on a boundary for different types of boundary conditions. The most general condition is the mixed one interpolating between the Neumann and Dirichlet conditions. We obtain the general expressions for the correlators on a boundary in terms of Green's function in the bulk for the Dirichlet, Neumann and mixed boundary conditions and establish the relations between the correlation functions. As an instructive example we explicitly obtain the boundary correlators corresponding to the mixed condition on a plane boundary RdR^d of a domain in flat space Rd+1R^{d+1}. The phases of the boundary theory with correlators of the Neumann and Dirichlet types are determined. The boundary correlation functions on sphere SdS^d are calculated for the Dirichlet and Neumann conditions in two important cases: when sphere is a boundary of a domain in flat space Rd+1R^{d+1} and when it is a boundary at infinity of Anti-De Sitter space AdSd+1AdS_{d+1}. For massless in the bulk theory the Neumann correlator on the boundary of AdS space is shown to have universal logarithmic behavior in all AdS spaces. In the massive case it is found to be finite at the coinciding points. We argue that the Neumann correlator may have a dual two-dimensional description. The structure of the correlators obtained, their conformal nature and some recurrent relations are analyzed. We identify the Dirichlet and Neumann phases living on the boundary of AdS space and discuss their evolution when the location of the boundary changes from infinity to the center of the AdS space.Comment: 32 pages, latex, no figure

    Two-Dimensional Reduced Theory and General Static Solution for Uncharged Black p-Branes

    Get PDF
    We derive a two-dimensional effective dilaton - gravity - matter action that describes the dynamics of an uncharged black p-brane in N dimensions. We show that this effective theory is completely integrable in the static sector and establish its general static solution. The solution includes, as a particular case, the boost symmetric p-brane solution investigated in hep-th/9510202 .Comment: 11 pages, plain LaTex, accepted for publication in Phys. Lett.

    Space for Both No-Boundary and Tunneling Quantum States of the Universe

    Full text link
    At the minisuperspace level of homogeneous models, the bare probability for a classical universe has a huge peak at small universes for the Hartle-Hawking `no-boundary' wavefunction, in contrast to the suppression at small universes for the `tunneling' wavefunction. If the probability distribution is cut off at the Planck density (say), this suggests that the former quantum state is inconsistent with our observations. For inhomogeneous models in which stochastic inflation can occur, it is known that the idea of including a volume factor in the observational probability distribution can lead to arbitrarily large universes' being likely. Here this idea is shown to be sufficient to save the Hartle-Hawking proposal even at the minisuperspace level (for suitable inflaton potentials), by giving it enough space to be consistent with observations.Comment: LaTeX, 20 pages, no figures, blank lines removed, page break inserte

    Gauge Invariant Higgs mass bounds from the Physical Effective Potential

    Get PDF
    We study a simplified version of the Standard Electroweak Model and introduce the concept of the physical gauge invariant effective potential in terms of matrix elements of the Hamiltonian in physical states. This procedure allows an unambiguous identification of the symmetry breaking order parameter and the resulting effective potential as the energy in a constrained state. We explicitly compute the physical effective potential at one loop order and improve it using the RG. This construction allows us to extract a reliable, gauge invariant bound on the Higgs mass by unambiguously obtaining the scale at which new physics should emerge to preclude vacuum instability. Comparison is made with popular gauge fixing procedures and an ``error'' estimate is provided between the Landau gauge fixed and the gauge invariant results.Comment: 23 pages, 2 figures, REVTE

    A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field

    Get PDF
    We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional effective theory of 2+1 cylindrical gravity minimally coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.

    Two-dimensional Quantum-Corrected Eternal Black Hole

    Get PDF
    The one-loop quantum corrections to geometry and thermodynamics of black hole are studied for the two-dimensional RST model. We chose boundary conditions corresponding to the eternal black hole being in the thermal equilibrium with the Hawking radiation. The equations of motion are exactly integrated. The one of the solutions obtained is the constant curvature space-time with dilaton being a constant function. Such a solution is absent in the classical theory. On the other hand, we derive the quantum-corrected metric (\ref{solution}) written in the Schwarzschild like form which is a deformation of the classical black hole solution \cite{5d}. The space-time singularity occurs to be milder than in classics and the solution admits two asymptotically flat black hole space-times lying at "different sides" of the singularity. The thermodynamics of the classical black hole and its quantum counterpart is formulated. The thermodynamical quantities (energy, temperature, entropy) are calculated and occur to be the same for both the classical and quantum-corrected black holes. So, no quantum corrections to thermodynamics are observed. The possible relevance of the results obtained to the four-dimensional case is discussed.Comment: Latex, 28 pges; minor corrections in text and abstract made and new references adde

    A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole

    Get PDF
    We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters MM and QQ of the Reissner-Nordstr\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity M2Q2M^2-Q^2 is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity M2Q2\sqrt{M^2-Q^2} are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 37 pages, Plain TeX, no figure

    Effective-Lagrangian approach to precision measurements: the anomalous magnetic moment of the muon

    Full text link
    We investigate the use of effective Lagrangians to describe the effects on high-precision observables of physics beyond the Standard Model. Using the anomalous magnetic moment of the muon as an example, we detail the use of effective vertices in loop calculations. We then provide estimates of the sensitivity of new experiments measuring the muon's g2 g - 2 to the scale of physics underlying the Standard Model.Comment: 22 pages, 1 figure, PHYZZX & EPSF, report #s UCRHEP-T98, UM_TH-92-17, and NSF-ITP-92-122I Revision: The paper will now TeX properly; the content is unchange

    Central charges and boundary fields for two dimensional dilatonic black holes

    Get PDF
    In this paper we first show that within the Hamiltonian description of general relativity, the central charge of a near horizon asymptotic symmetry group is zero, and therefore that the entropy of the system cannot be estimated using Cardy's formula. This is done by mapping a static black hole to a two dimensional space. We explain how such a charge can only appear to a static observer who chooses to stay permanently outside the black hole. Then an alternative argument is given for the presence of a universal central charge. Finally we suggest an effective quantum theory on the horizon that is compatible with the thermodynamics behaviour of the black hole.Comment: 16 pages, no figures, LaTex 2e, references adde

    Canonical Quantum Statistics of an Isolated Schwarzschild Black Hole with a Spectrum E_n = sigma sqrt{n} E_P

    Full text link
    Many authors - beginning with Bekenstein - have suggested that the energy levels E_n of a quantized isolated Schwarzschild black hole have the form E_n = sigma sqrt{n} E_P, n=1,2,..., sigma =O(1), with degeneracies g^n. In the present paper properties of a system with such a spectrum, considered as a quantum canonical ensemble, are discussed: Its canonical partition function Z(g,beta=1/kT), defined as a series for g<1, obeys the 1-dimensional heat equation. It may be extended to values g>1 by means of an integral representation which reveals a cut of Z(g,beta) in the complex g-plane from g=1 to infinity. Approaching the cut from above yields a real and an imaginary part of Z. Very surprisingly, it is the (explicitly known) imaginary part which gives the expected thermodynamical properties of Schwarzschild black holes: Identifying the internal energy U with the rest energy Mc^2 requires beta to have the value (in natural units) beta = 2M(lng/sigma^2)[1+O(1/M^2)], (4pi sigma^2=lng gives Hawking's beta_H), and yields the entropy S=[lng/(4pi sigma^2)] A/4 + O(lnA), where A is the area of the horizon.Comment: 14 pages, LaTeX A brief note added which refers to previous work where the imaginary part of the partition function is related to metastable states of the syste
    corecore