1,751 research outputs found

    Mass Mixing, the Fourth Generation, and the Kinematic Higgs Mechanism

    Full text link
    We describe how to construct chiral fermion mass terms using Dirac-Kahler (DK) spinors. Classical massive DK spinors are shown to be equivalent to four generations of Dirac spinors with equal mass coupled to a background U(2,2) gauge field. Quantization breaks U(2,2) to U(2)xU(2), lifts mass spectrum degeneracy, and generates a non-trivial mass mixing matrix.Comment: 12 pages. No figures. Phys Lett B version. Minor typos fixe

    The Spectrum of the 4-Generation Dirac-Kaehler Extension of the SM

    Full text link
    We compute the mass spectrum of the fermionic sector of the Dirac-Kaehler extension of the SM (DK-SM) by showing that there exists a Bogoliubov transformation that transforms the DK-SM into a flavor U(4) extension of the SM (SM-4) with a particular choice of masses and mixing textures. Mass relations of the model allow determination of masses of the 4th generation. Tree level prediction for the mass of the 4th charged lepton is 370 GeV. The model selects the normal hierarchy for neutrino masses and reproduces naturally the near tri-bimaximal and quark mixing textures. The electron neutrino and the 4th neutrino masses are related via a see-saw-like mechanism.Comment: 14 pages. Phys Lett B versio

    A momentum-space representation of Feynman propagator in Riemann-Cartan spacetime

    Full text link
    We first construct generalized Riemann-normal coordinates by using autoparallels, instead of geodesics, in an arbitrary Riemann-Cartan spacetime. With the aid of generalized Riemann-normal coordinates and their associated orthonormal frames, we obtain a momentum-space representation of the Feynman propagator for scalar fields, which is a direct generalization of Bunch and Parker's works to curved spacetime with torsion. We further derive the proper-time representation in nn dimensional Riemann-Cartan spacetime from the momentum-space representation. It leads us to obtain the renormalization of one-loop effective Lagrangians of free scalar fields by using dimensional regularization. When torsion tensor vanishes, our resulting momentum-space representation returns to the standard Riemannian results.Comment: 12 page

    White Micas as a tool for tracking pegmatite evolution and its use in Li exploration. A case study of Wekusko Lake, Manitoba, Canada.

    Get PDF
    The Wekusko Lake pegmatite field is part of the Green Bay Group of pegmatites located near Snow Lake, Manitoba, Canada. Within this field, there are at least 13 spodumene-bearing pegmatites of varying degrees of mineralization. The abundance of white micas and the chemical affinity to incorporate Li and other trace elements into its crystalline structure makes white micas an ideal indicator mineral. The evolution of a melt can be tracked using trace elements in white mica. The K/Rb ratio vs Cs is used to determine a link between increasing evolution and increased Li contents of both the white mica and the pegmatite. White mica compositions were examined using portable Raman and LIBS to evaluate whether Li contents can be determined in the field. The LIBS was able to identify the pegmatites dikes with the highest Li contents, which can be applied to real-time decision-making during exploration

    Tight constraints on the existence of additional planets around HD 189733

    Full text link
    We report a transit timing study of the transiting exoplanetary system HD 189733. In total we observed ten transits in 2006 and 2008 with the 2.6-m Nordic Optical Telescope, and two transits in 2007 with the 4.2-m William Herschel Telescope. We used Markov-Chain Monte Carlo simulations to derive the system parameters and their uncertainties, and our results are in a good agreement with previously published values. We performed two independent analyses of transit timing residuals to place upper mass limits on putative perturbing planets. The results show no evidence for the presence of planets down to 1 Earth mass near the 1:2 and 2:1 resonance orbits, and planets down to 2.2 Earth masses near the 3:5 and 5:3 resonance orbits with HD 189733b. These are the strongest limits to date on the presence of other planets in this system.Comment: 10 pages, 4 figures, accepted by MNRA

    Physical Conditions in Quasar Outflows: VLT Observations of QSO 2359-1241

    Full text link
    We analyze the physical conditions of the outflow seen in QSO 2359-1241 (NVSS J235953-124148), based on high resolution spectroscopic VLT observations. This object was previously studied using Keck/HIRES data. The main improvement over the HIRES results is our ability to accurately determine the number density of the outflow. For the major absorption component, level population from five different Fe II excited level yields n_H=10^4.4 cm^-3 with less than 20% scatter. We find that the Fe ii absorption arises from a region with roughly constant conditions and temperature greater than 9000 K, before the ionization front where temperature and electron density drop. Further, we model the observed spectra and investigate the effects of varying gas metalicities and the spectral energy distribution of the incident ionizing radiation field. The accurately measured column densities allow us to determine the ionization parameter log(U) = -2.4 and total column density of the outflow (log(N_H) = 20.6 cm^-2). Combined with the number density finding, these are stepping stones towards determining the mass flux and kinetic luminosity of the outflow, and therefore its importance to AGN feedback processes.Comment: 21 pages, 3 figures (accepted for publication in the ApJ

    Transition to marine ice cliff instability controlled by ice thickness gradients and velocity

    Get PDF
    Funding: This work is from the DOMINOS project, a component of the International Thwaites Glacier Collaboration (ITGC). Support came from NSF grant 1738896 and Natural Environment Research Council (NERC) grant NE/S006605/1. Logistics were provided by NSF–U.S. Antarctic Program and NERC–British Antarctic Survey. This study is ITGC contribution no. ITGC-044.Portions of ice sheets grounded deep beneath sea level can disintegrate if tall ice cliffs at the ice-ocean boundary start to collapse under their own weight. This process, called marine ice cliff instability, could lead to catastrophic retreat of sections of West Antarctica on decadal-to-century time scales. Here we use a model that resolves flow and failure of ice to show that dynamic thinning can slow or stabilize cliff retreat, but when ice thickness increases rapidly upstream from the ice cliff, there is a transition to catastrophic collapse. However, even if vulnerable locations like Thwaites Glacier start to collapse, small resistive forces from sea-ice and calved debris can slow down or arrest retreat, reducing the potential for sustained ice sheet collapse.PostprintPeer reviewe

    Political brands: can parties be distinguished by their online brand personality?

    Get PDF
    This paper investigates whether or not five English political parties are differentiating themselves based on the brand personality they are communicating through their websites. The relative brand positions of five English political parties are analysed using Aaker’s brand personality scale. The text from each party website is analysed using content analysis and a dictionary-based tool. The results are plotted in relation to one another on a correspondence analysis map. We find that the two main dimensions on which parties' brand personalities differ relate to the trade-offs between communicating Competence and communicating Sincerity, and between communicating Sophistication and communicating Ruggedness. We find that parties' brand personalities are distinctive, with the exception of the Green party, and that the position of one party, the United Kingdom Independence Party, is particularly distinctive. Our research uses Aaker’s existing framework for thinking about brand personalities, rather than creating a new framework for politics. By using an existing framework, we are able to use tools developed in other disciplines, and show their usefulness for the study of political marketing

    Revisiting Clifford algebras and spinors III: conformal structures and twistors in the paravector model of spacetime

    Full text link
    This paper is the third of a series of three, and it is the continuation of math-ph/0412074 and math-ph/0412075. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of the group Spin_+(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the lorentzian R{4,1}$ spacetime. We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra Cl(1,3)(C) using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose the Clifford algebra over R{4,1} is also used to describe conformal maps, instead of R{2,4}. Although some papers have already described twistors using the algebra Cl(1,3)(C), isomorphic to Cl(4,1), the present formulation sheds some new light on the use of the paravector model and generalizations.Comment: 17 page

    Black Holes with Weyl Charge and Non-Riemannian Waves

    Get PDF
    A simple modification to Einstein's theory of gravity in terms of a non-Riemannian connection is examined. A new tensor-variational approach yields field equations that possess a covariance similar to the gauge covariance of electromagnetism. These equations are shown to possess solutions analogous to those found in the Einstein-Maxwell system. In particular one finds gravi-electric and gravi-magnetic charges contributing to a spherically symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a source for the non-Riemannian torsion and metric gradient fields instead of the electromagnetic field. The theory suggests that matter may be endowed with gravitational charges that couple to gravity in a manner analogous to electromagnetic couplings in an electromagnetic field. The nature of gravitational coupling to spinor matter in this theory is also investigated and a solution exhibiting a plane-symmetric gravitational metric wave coupled via non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit
    • …
    corecore