452 research outputs found

    Nonlinear resonance in a three-terminal carbon nanotube resonator

    Full text link
    The RF-response of a three-terminal carbon nanotube resonator coupled to RF-transmission lines is studied by means of perturbation theory and direct numerical integration. We find three distinct oscillatory regimes, including one regime capable of exhibiting very large hysteresis loops in the frequency response. Considering a purely capacitive transduction, we derive a set of algebraic equations which can be used to find the output power (S-parameters) for a device connected to transmission lines with characteristic impedance Z0Z_0.Comment: 16 pages, 8 figure

    Helium Emission in the Type Ic SN 1999cq

    Get PDF
    We present the first unambiguous detection of helium emission lines in spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full width at half maximum ~ 2000 km/s, and the distinct absence of any other intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic 1999cq are interacting with dense circumstellar material composed of almost pure helium. This strengthens the argument that the progenitors of SNe Ic are core-collapse events in stars that have lost both their hydrogen and helium envelopes, either through a dense wind or mass-transfer to a companion. In this way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that helped firmly establish a physical connection between Type Ib and Type II supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid rise followed by a quick decline. SN 1999cq is also found to exhibit a high level of emission at blue wavelengths (< 5500 A), likely resulting from either an unusually large amount of iron and iron-group element emission or uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the Astronomical Journa

    Sensing remote nuclear spins

    Full text link
    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor

    Non-accretive Schrödinger operators and exponential decay of their eigenfunctions

    Get PDF
    International audienceWe consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay

    Theories of Reference: What Was the Question?

    Get PDF
    The new theory of reference has won popularity. However, a number of noted philosophers have also attempted to reply to the critical arguments of Kripke and others, and aimed to vindicate the description theory of reference. Such responses are often based on ingenious novel kinds of descriptions, such as rigidified descriptions, causal descriptions, and metalinguistic descriptions. This prolonged debate raises the doubt whether different parties really have any shared understanding of what the central question of the philosophical theory of reference is: what is the main question to which descriptivism and the causal-historical theory have presented competing answers. One aim of the paper is to clarify this issue. The most influential objections to the new theory of reference are critically reviewed. Special attention is also paid to certain important later advances in the new theory of reference, due to Devitt and others

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    The type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope

    Full text link
    We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absorption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; and (iii) broad, smooth wings, most apparent in H-alpha. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the supernova is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. We model the supernova deceleration and Thomson scattering wings to recover the density, radial extent and Thomson optical depth of the CS envelope during the first month. We reproduce the light curve with a hydrodynamical model and find it to be powered by a combination of internal energy leakage after the explosion of an extended pre-supernova (~10^15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope: it is close to homologous expansion with outer velocity ~1100 km/s and a kinematic age of ~1.5 yr. The CS envelope's high mass and kinetic energy, combined with its small age, strongly suggest that the CS envelope was explosively ejected about 1.5 yr before the supernova explosion.Comment: 22 pages, 21 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Acousto-optical Scanning-Based High-Speed 3D Two-Photon Imaging In Vivo.

    Get PDF
    Recording of the concerted activity of neuronal assemblies and the dendritic and axonal signal integration of downstream neurons pose different challenges, preferably a single recording system should perform both operations. We present a three-dimensional (3D), high-resolution, fast, acousto-optic two-photon microscope with random-access and continuous trajectory scanning modes reaching a cubic millimeter scan range (now over 950 × 950 × 3000 μm3) which can be adapted to imaging different spatial scales. The resolution of the system allows simultaneous functional measurements in many fine neuronal processes, even in dendritic spines within a central core (>290 × 290 × 200 μm3) of the total scanned volume. Furthermore, the PSF size remained sufficiently low (PSFx < 1.9 μm, PSFz < 7.9 μm) to target individual neuronal somata in the whole scanning volume for simultaneous measurement of activity from hundreds of cells. The system contains new design concepts: it allows the acoustic frequency chirps in the deflectors to be adjusted dynamically to compensate for astigmatism and optical errors; it physically separates the z-dimension focusing and lateral scanning functions to optimize the lateral AO scanning range; it involves a custom angular compensation unit to diminish off-axis angular dispersion introduced by the AO deflectors, and it uses a high-NA, wide-field objective and high-bandwidth custom AO deflectors with large apertures. We demonstrate the use of the microscope at different spatial scales by first showing 3D optical recordings of action potential back propagation and dendritic Ca2+ spike forward propagation in long dendritic segments in vitro, at near-microsecond temporal resolution. Second, using the same microscope we show volumetric random-access Ca2+ imaging of spontaneous and visual stimulation-evoked activity from hundreds of cortical neurons in the visual cortex in vivo. The selection of active neurons in a volume that respond to a given stimulus was aided by the real-time data analysis and the 3D interactive visualization accelerated selection of regions of interest
    corecore