29 research outputs found

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    In Vitro and In Vivo Comparison of Changes in Antibiotics Susceptibility of E. coli and Chicken’s Intestinal Flora after Exposure to Amoxicillin or Thymol

    No full text
    This study aims at verifying, in vitro, the extent to which the use of amoxicillin or thymol induces the selection of resistant bacteria and at evaluating in vivo their effects on the development of antimicrobial resistance in the intestinal flora of poultry. E. coli strain was subcultured on agar plates containing increasing concentrations of either amoxicillin or thymol. Thereafter, minimal inhibitory concentrations (MICs) of thymol, amoxicillin, and two other antibiotics, tylosin and colistin, were determined using the microdilution method. Groups of chicks were subjected to a 2-week regime of either amoxicillin or thymol added to their drinking water. During the treatment with either thymol or amoxicillin, the total aerobic mesophilic flora (TAMF) was counted on thymol-gradient plates or amoxicillin-gradient plates and the MICs of antibiotics and thymol for E. coli isolates were determined. The in vitro test showed that for E. coli, which had been serially subcultured on increasing concentrations of amoxicillin, a 32-fold increase in MIC values for amoxicillin and a 4-fold increase for colistin and tylosin were noted. However, the MIC of thymol for this strain remained constant. For the E. coli, which had been serially subcultured on increasing concentrations of thymol, no change in the MIC values for antibiotics and thymol was observed. The in vivo test confirmed the in vitro one. It demonstrated that exposure to amoxicillin induced a selection of antimicrobial resistance in TAMF and intestinal E. coli, whereas exposure to thymol did not. The results showed that the group receiving thymol had a lower consumption index compared to the other groups. This study demonstrates the feasibility of this natural product as an alternative solution to the current use of antibiotics in poultry farming

    The Antistaphylococcal Activity of Amoxicillin/Clavulanic Acid, Gentamicin, and 1,8-Cineole Alone or in Combination and Their Efficacy through a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Osteomyelitis

    No full text
    The aim of this research paper is to test the antistaphylococcal effect of 1,8-cineole, amoxicillin/clavulanic acid (AMC), and gentamicin, either separately or in combination against three Staphylococcus aureus strains isolated from patients suffering from osteomyelitis. This activity was tested in vitro by using the microdilution method and the checkerboard assay. The efficacy of these three antibacterial agents was then tested in vivo by using an experimental model of methicillin-resistant S. aureus osteomyelitis in rabbits. This efficacy was assessed after four days of treatment by counting the number of bacteria in the bone marrow. The obtained results in vitro showed that the combination of the AMC with gentamicin did not induce a synergistic effect, whereas the combination of the two antibiotics with 1,8-cineole did. This effect is stronger when AMC is combined with 1,8-cineole as a total synergistic effect was obtained on the three strains used (FIC ≤ 0.5). In vivo, a significant reduction was noted in the number of colonies in the bone marrow when rabbits were treated with AMC associated with either 1,8-cineole or gentamicin compared to rabbits treated with AMC, gentamicin, or 1,8-cineole alone. These results demonstrated that 1,8-cineole showed a synergistic effect in combination with both AMC and gentamicin, which offer possibilities for reducing antibiotic usage. Also, the AMC associated with 1,8-cineole could be used to treat MRSA osteomyelitis

    Toxoplasma gondii infection in pork produced in France

    No full text
    The aim of this study was to assess the seroprevalence of the Toxoplasma gondii parasite in pork produced in France, and to determine infection risk factors. An innovative survey was designed based on annual numbers of slaughtered pigs from intensive and outdoor farms in France. A total of 1549 samples of cardiac fluids were collected from pig hearts to determine seroprevalence using a Modified Agglutination Test. Of those, 160 hearts were bio-assayed in mice to isolate live parasites. The overall seroprevalence among fattening pigs was 2.9%. The adjusted seroprevalence in pigs from intensive farms was 3.0%; the highest in sows (13.4%); 2.9% in fattening pigs and 2.6% in piglets. Adjusted seroprevalence in fattening animals from outdoor farms was 6.3%. Strains were isolated from 41 animals and all were genotyped by Restriction Fragment Length Polymorphism as type II. Risk-factor analysis showed that the risk of infection was more than three times higher for outdoor pigs, and that sows' risk was almost five times higher than that of fattening animals. This study provides further evidence of extensive pork infection with T. gondii regardless of breeding systems, indicating that farm conditions are still insufficient to guarantee 'Toxoplasma-free pork'
    corecore