135 research outputs found
CUBENAV: A Flight Dynamics Tool to Support Guidance and Navigation Operations of Deep-Space CubeSats
Tuberculosis incidence in foreign-born people residing in European countries in 2020.
BackgroundEuropean-specific policies for tuberculosis (TB) elimination require identification of key populations that benefit from TB screening.AimWe aimed to identify groups of foreign-born individuals residing in European countries that benefit most from targeted TB prevention screening.MethodsThe Tuberculosis Network European Trials group collected, by cross-sectional survey, numbers of foreign-born TB patients residing in European Union (EU) countries, Iceland, Norway, Switzerland and the United Kingdom (UK) in 2020 from the 10 highest ranked countries of origin in terms of TB cases in each country of residence. Tuberculosis incidence rates (IRs) in countries of residence were compared with countries of origin.ResultsData on 9,116 foreign-born TB patients in 30 countries of residence were collected. Main countries of origin were Eritrea, India, Pakistan, Morocco, Romania and Somalia. Tuberculosis IRs were highest in patients of Eritrean and Somali origin in Greece and Malta (both > 1,000/100,000) and lowest among Ukrainian patients in Poland (3.6/100,000). They were mainly lower in countries of residence than countries of origin. However, IRs among Eritreans and Somalis in Greece and Malta were five times higher than in Eritrea and Somalia. Similarly, IRs among Eritreans in Germany, the Netherlands and the UK were four times higher than in Eritrea.ConclusionsCountry of origin TB IR is an insufficient indicator when targeting foreign-born populations for active case finding or TB prevention policies in the countries covered here. Elimination strategies should be informed by regularly collected country-specific data to address rapidly changing epidemiology and associated risks
2-Deoxy-2[F-18]FDG-PET for Detection of Recurrent Laryngeal Carcinoma after Radiotherapy: Interobserver Variability in Reporting
Purpose: To evaluate accuracy and interobserver variability in the assessment of 2-deoxy-2[F-18]fluoro-d-glucose-positron emission tomography (FDG-PET) for detection of recurrent laryngeal carcinoma after radiotherapy. Procedures: Eleven experienced nuclear physicians from eight centres assessed 30 FDG-PET scans on the appearance of local recurrence (negative/equivocal/positive). Conservative (equivocal analysed as negative) and sensitive (equivocal analysed as positive) assessment strategies were compared to the reference standard (recurrence within 6months after PET). Results: Seven patients had proven recurrences. For the conservative and sensitive strategy, the mean sensitivity was 87% and 97%, specificity 81% and 63%, positive predictive values 61% and 46% and negative predictive values 96% and 99%, respectively. Interobserver variability showed a reasonable relation in comparison to the reference standard (kappa = 0.55). Conclusions: FDG-PET has acceptable interobserver agreement and yields good negative predictive value for detection of recurrent laryngeal carcinoma. It could therefore be used as first diagnostic step and may reduce futile invasive diagnostics
Anatomical and histological characteristics of teeth in agouti (Dasyprocta prymnolopha Wagler, 1831)
Infection control, genetic assessment of drug resistance and drug susceptibility testing in the current management of multidrug/extensively-resistant tuberculosis (M/XDR-TB) in Europe: A tuberculosis network European Trialsgroup (TBNET) study
Aim Europe has the highest documented caseload and greatest increase in multidrug and extensively drug-resistant tuberculosis (M/XDR-TB) of all World Health Organization (WHO) regions. This survey examines how recommendations for M/XDR-TB management are being implemented. Methods TBNET is a pan-European clinical research collaboration for tuberculosis. An email survey of TBNET members collected data in relation to infection control, access to molecular tests and basic microbiology with drug sensitivity testing. Results 68/105 responses gave valid information and were from countries within the WHO European Region. Inpatient beds matched demand, but single rooms with negative pressure were only available in low incidence countries; ultraviolet decontamination was used in 5 sites, all with >10 patients with M/XDR-TB per year. Molecular tests for mutations associated with rifampicin resistance were widely available (88%), even in lower income and especially in high incidence countries. Molecular tests for other first line and second line drugs were less accessible (76 and 52% respectively). A third of physicians considered that drug susceptibility results were delayed by > 2 months. Conclusion Infection control for inpatients with M/XDR-TB remains a problem in high incidence countries. Rifampicin resistance is readily detected, but tests to plan regimens tailored to the drug susceptibilities of the strain of Mycobacterium tuberculosis are significantly delayed, allowing for further drug resistance to develop
Rifapentine access in Europe: growing concerns over key tuberculosis treatment component
[No abstract available]Support statement: C. Lange is supported by the German Center of Infection Research (DZIF). All other authors have no funding to declare for this study. Funding information for this article has been deposited with the Crossref Funder Registry
Strategic research agenda for biomedical imaging
This Strategic Research Agenda identifies current challenges and needs in healthcare, illustrates how biomedical imaging and derived data can help to address these, and aims to stimulate dedicated research funding efforts. Medicine is currently moving towards a more tailored, patient-centric approach by providing personalised solutions for the individual patient. Innovation in biomedical imaging plays a key role in this process as it addresses the current needs for individualised prevention, treatment, therapy response monitoring, and image-guided surgery. The use of non-invasive biomarkers facilitates better therapy prediction and monitoring, leading to improved patient outcomes. Innovative diagnostic imaging technologies provide information about disease characteristics which, coupled with biological, genetic and -omics data, will contribute to an individualised diagnosis and therapy approach. In the emerging field of theranostics, imaging tools together with therapeutic agents enable the selection of best treatments and allow tailored therapeutic interventions. For prenatal monitoring, the use of innovative imaging technologies can ensure an early detection of malfunctions or disease. The application of biomedical imaging for diagnosis and management of lifestyle-induced diseases will help to avoid disease development through lifestyle changes. Artificial intelligence and machine learning in imaging will facilitate the improvement of image interpretation and lead to better disease prediction and therapy planning. As biomedical imaging technologies and analysis of existing imaging data provide solutions to current challenges and needs in healthcare, appropriate funding for dedicated research is needed to implement the innovative approaches for the wellbeing of citizens and patients
- …