
CUBENAV: A FLIGHT DYNAMICS TOOL TO SUPPORT GUIDANCE AND NAVIGATION
OPERATIONS OF DEEP-SPACE CUBESATS

Julia Muylle(1), Alessandro Morselli(1), Marco Lombardo(2), Alfredo Locarini(2), Luis Gomez
Casajus(2), Marco Maggi(2), Marco Zannoni(2), Francesco Topputo(1), Valeria Cottini(3), Simone

Ciabuschi(3), Silvia Natalucci(3)

(1)Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy, +39-02-2399-7157, {julialisa.muylle,
alessandro.morselli, francesco.topputo}@polimi.it

(2)Università di Bologna, Via Fontanelle 40, 47121 Forlı̀, Italy, +39-0543-374437,
{marco.lombardo14, alfredo.locarini, luis.gomezcasajus, marco.maggi7, m.zannoni}@unibo.it

(3)Italian Space Agency (ASI), Via del Politecnico snc, 00133 Roma, Italy, +39 06 8567917,
{valeria.cottini, simone.ciabuschi, silvia.natalucci}@asi.it

ABSTRACT

On ground satellite operations represent a significant part of mission development, both in terms
of cost and time. This is particularly true for CubeSats, which are intended as low-budget satel-
lites. The need of tools that could minimize the involvement of operators is therefore evident.
CubeNav is a project aimed at developing a Flight Dynamics infrastructure tailored for support-
ing GNC operations of interplanetary CubeSats. The use of such a tool should ease the planning,
development, engineering, and validation of Flight Dynamics operations and procedures, thus re-
ducing the need of intervention by satellite operators. This work presents the overall architecture
of CubeNav, with a focus on the modules being implemented and on the level of interaction be-
tween the user and the software blocks interfaces and outputs. The software is based on ESA’s
GODOT software and is developed in a modular fashion, to ease the automation of procedures to
perform operations and analyses. CubeNav includes a Graphical User Interface, which allows the
user to manage the execution of tools, provide input data as well as visualizing and interacting
with outputs. The GUI provides a practical and fast way of performing necessary flight dynam-
ics computations and visualizing the results in effective graphs and a timeline with all relevant
events.

1 INTRODUCTION

The space exploration is moving towards a new paradigm, by exploiting the lower cost of miniaturized
platforms: the interplanetary CubeSats. The reason behind this interest is that modularization and
miniaturization of spacecraft components lead to a significant reduction of production, integration
and launch costs. CubeSats are small and economical, but still capable of performing many different
mission tasks [3], as already proven for near-Earth orbits. Nevertheless, the current modus operandi
can hamper this momentum: while the system development costs scale with its size, the same is not
true for flight dynamics operations, which are still expensively performed from ground, so requiring
personnel and ground assets, which - at this pace - will soon saturate. The use of automated and
advanced flight dynamics software could help in reducing the need of human effort and therefore the
cost of operations. In this frame, the CubeNav project has been developed as an integrated flight
dynamics infrastructure to support navigation operations for deep-space CubeSats. The project is

ESA GNC-ICATT 2023 – Julia Muylle 1

funded by the Italian Space Agency (ASI), as part of the ALCOR program [6], and developed as
a joint collaboration between the Radio Science and Planetary exploration Lab of the University of
Bologna (Unibo) and the Deep-Space Astrodynamics Research and Technology (DART) Lab of the
Politecnico di Milano. Both teams have been involved in different deep-space CubeSats missions.
Namely, Unibo performed the navigation of LICIACube [5] and ArgoMoon [7] while the DART Lab
is leading the phase B study of LUMIO [1] and has performed the mission analysis and Guidance,
Navigation and Control (GNC) development of HERA’s Milani CubeSat [4].
This paper will present the architecture of the CubeNav software and the associated benefits that
can be derived. In Section 2, an overview of the software’s objectives and utilities is presented,
together with the underlying third-party software and external dependencies exploited. In Section 3,
the overall software architecture is described, focusing on the implemented modules and on the level
of interaction with the user and with the interfaces to other software. In particular, the architecture
is developed in three layers: Mission Analysis, Interface and Flight Dynamics. Additionally, the
Graphical User Interface (GUI) is presented as the envelop which allows the user to interact with the
software. In section 4, the current status of development of the software and the planned developments
are presented. Finally, concluding remarks are provided in Section 5.

2 THE CUBENAV PROJECT

The CubeNav project is aimed at developing a Flight Dynamics software to support operations of
deep-space missions. The software development leverages the expertise of the two involved research
groups to provide an integrated infrastructure to support GNC operations: in particular, the devel-
opment of the navigation analysis tools is performed by researchers of Unibo, while the DART Lab
is in charge of the implementation of the guidance ones. CubeNav is therefore intended as a tool
that will ease and automatize flight dynamics operations and procedures. The tool is expected to be
fully implemented and tested by January 2024. All the underlying codes for guidance and navigation
analysis have already been developed, while the user interface is still in development, in particular for
integration of guidance and navigation solutions. The existing tools are currently being tested with
the use of unit tests and regression tests, while the GUI will be tested through functional tests.
The benefits that the use of such a tool could bring regard the cost of operations performed manually,
the time spent by the operators and the precision of the results, especially for small satellites. The
CubeNav software generates as outputs all the parameters and mission details relevant to navigation
operations, which could bring to a reduction of the learning curve to perform GNC analyses. This also
contributes to requiring a lower need of support from operators, thus reducing the cost of operations
and the chances of human error, as well as enabling a faster scenario setting and data analysis.
The software has been designed considering as key drivers the code maintainability and modularity
in order to ease its development and validation. The modular organization of the software is per-
formed such that similar functionalities are grouped together or collected in libraries. The tools and
applications shall then make use of developed libraries. Furthermore, the dependencies from exter-
nal software are limited to the minimum necessary and restricted to open source software. Finally,
the software coding is standardized such that the architecture of the software is coherently organized
between the two research groups and unit tests are implemented in parallel with the libraries and
performed on each of them independently.

2.1 External dependencies

The CubeNav software is intended for use during astrodynamics and small satellites operations. This
means that the software shall guarantee high standards in code quality, reliability, and ease of main-
tenance. To this aim, it is extremely important to carefully select the external software to be used

ESA GNC-ICATT 2023 – Julia Muylle 2

within the project, in particular for its C++ modules. While many external libraries with advanced
features might exists, it is necessary to make use of stable, mature libraries which can therefore guar-
antee backward compatibility among versions and API stability. This is key to avoid the burden of
constantly update the project’s source code to keep track of changes in external dependencies or be-
ing forced to stick with an older version of such libraries (a non trivial issue for an astrodynamics
software, whose expected lifespan can easily exceed 10 years). Therefore, the selection of third party
software has been performed according to the following criteria:

• minimize external dependencies, allowing only those that are actually critical for the software.

• avoid the use of proprietary or closed-source software, favoring instead the adoption of those li-
braries which are released under open-source license such as the Lesser General Public License
(LGPL) or more permissive license.

• favor the use of validated libraries for critical computations.

The third party software used in CubeNav can be divided in two categories. The first set includes
libraries for arguments parsing (TCLAP1), parsing and generation of input and output files (yaml-
cpp2).
The second category groups the software dedicated to the astrodynamics computations. These are
ESA’s GODOT3 and NASA JPL’s SPICE4 which are employed for the generation of orbital mod-
els and observations model. GODOT is a flight dynamics software developed by ESA/ESOC that
performs computations for estimation, optimisation and analysis of spacecraft orbits. GODOT is
composed by many libraries, developed in C++ and Python, which can be used by the user to cre-
ate their own solutions. In CubeNav, GODOT is used in its C++ version for analyses of spacecraft
orbits through computation of astrodynamical events, preliminary Orbit Determination and residuals
processing. The SPICE system is instead used for retrieving celestial bodies ephemeris in trajec-
tory optimization tools and as an alternative to GODOT for orbital events computations to allow the
maximum flexibility for the user.
For what concerns the Python modules, the same guidelines have been followed. The use of the
GODOT Python interface5 already brings in as transitive dependencies a comprehensive set of com-
mon Python modules, (e.g. numpy). In addition, the following modules are direct dependencies of
CubeNav Python modules: matplotlib, which is used for graphical representations of orbits, and
PySide66 for the realization of the Graphical User Interface of CubeNav.

3 CUBENAV ARCHITECTURE

The CubeNav software is organized in four layers, which represent the four main functional blocks
of the software. A schematic representation of CubeNav layers organization is presented in Figure 1.

1https://tclap.sourceforge.net/. Last visited on: 17/05/2023.
2https://github.com/jbeder/yaml-cpp. Last visited on: 17/05/2023.
3https://godot.io.esa.int/docs/1.2.0/. Last visited on: 17/05/2023.
4https://naif.jpl.nasa.gov/naif/toolkit.html. Last visited on: 17/05/2023.
5https://godot.io.esa.int/godotpy/. Last visited on: 17/05/2023
6https://doc.qt.io/qtforpython-6/. Last visited on: 17/05/2023.

ESA GNC-ICATT 2023 – Julia Muylle 3

https://tclap.sourceforge.net/
https://github.com/jbeder/yaml-cpp
https://godot.io.esa.int/docs/1.2.0/
https://naif.jpl.nasa.gov/naif/toolkit.html
https://godot.io.esa.int/godotpy/
https://doc.qt.io/qtforpython-6/

Figure 1: CubeNav architecture organization in layers.

The first layer is the Orbital Modelling Engine Layer and it is the only layer which is not directly
implemented within the CubeNav project. This layer is composed by the third party software that
provide an extensive and comprehensive orbital and observation model to perform trajectory design
and reconstruction. The two software used by CubeNav could be ESA’s GODOT or NASA JPL’s
SPICE. The second layer is the Mission Analysis layer, which contains the actual low-level procedure
to generate the outputs to be visualized in the upper layers. This layer is composed of several libraries
that are property of Unibo and Polimi, or third party, and it can be further subdivided in two main
processing modules: the Navigation Module and the Guidance and Control (GC) Module. The third
layer is the Interface layer, which represents the interface with the outputs obtained from the lower
layer to convert them in suitable formats, to be used for the flight dynamics computations in layer 4.
The last layer is the Flight Dynamics layer, which represents the layer that actually executes all flight
dynamics procedures to get the desired outputs. All these layers are managed by the Graphical User
Interface, which represents the tool which the user will interact with. The GUI has a twofold objective:
on one hand it allows the definition of user-defined inputs and selection of desired outputs, on the other
hand it provides graphical and text representation of the results obtained from computations.
The architectural flow followed by the software is described in the following and graphically rep-
resented in Figure 2. The definition of input data, orbit file and environment set-up by the user
is performed through the GUI. In particular, if the orbit file is not available, this can be generated
through layers 2 and 3 with the available optimizer, or with other external software. The selection
of the environment file is then transferred to layer 1, where the universe and ephemeris necessary for
computations are uploaded and set up. The defined inputs and orbit file are then used by the Flight
Dynamics layer to retrieve the user-selected outputs. Here, the code segments that are run depend on
the desired output selected by the user. Different solvers might be used, in which case they are run
in parallel. Once all the computations are completed, the output file is created, and, if selected by the
user, the graphical representation is shown in the GUI.

ESA GNC-ICATT 2023 – Julia Muylle 4

GUI

EnvironmentInput dataOrbit File

Scenario Set-Up

Solver

GUI

Output File

Plot Tool Plot
Yes

GUI
Layer 1

Layer 4

Figure 2: CubeNav architecture flow. The colors refer to the corresponding layer, as defined in Figure 1.

3.1 Mission Analysis layer

The mission analysis layer represents the layer where the outputs necessary for flight dynamics analy-
ses are computed. This is divided into guidance and navigation. In the guidance module the trajectory
is computed and optimized, while the navigation module performs orbit determination and flight path
control. This layer is based on third party software, mainly Polimi and Unibo proprietary software.

3.1.1 Guidance

The GC module collects the Polimi’s software to perform trajectory design and optimization. The
four software available are ULTIMAT (Ultra Low Thrust Interplanetary Mission Analysis Tool),
LT2O (Low-Thrust Trajectory Optimizer), DIRETTO (DIREct collocation Tool for Trajectory Op-
timization) and the Milani Mission Analysis Pipeline. The first [2] is a software meant to provide an
analysis and simulation suite for low thrust interplanetary scenarios, implemented in MATLAB and
fully integrated with the NASA’s JPL SPICE Toolkit. The software is aimed at performing impulsive
trajectory optimization into highly nonlinear models, where the design is constrained from very lim-
ited control authority. ULTIMAT is composed by two main modules: the Design module implements
trajectory optimization techniques in a high fidelity model, while the Assessment module assesses
the flyability of such trajectories. In particular, the trajectory design embeds the possibility of find-
ing periodic and quasi-periodic orbits, optimize impulsive transfer trajectories with a multiple-burn

ESA GNC-ICATT 2023 – Julia Muylle 5

multiple-shooting technique, transform impulsive solutions into a finite-burn equivalent, and perform
station keeping analyses. The assessment of the trajectory is instead performed through a number
of hierarchical tasks ranging from preliminary geometrical checks to detailed navigation analyses:
in particular, the outputs that the software can provide are a pre-processing of the solution evalu-
ating mission requirements against celestial events and linking constraints; visibility windows and
related radiometric measurements computation; sensitivity analysis against variations of low-thrust
maneuver timing, duration, magnitude, and pointing angles; Orbit Determination (OD) and Covari-
ance Analysis (CA); quantification of Navigation Cost (NC). LT2O [2] is a software developed for
low-thrust trajectory optimization of transfer with multiple revolutions with indirect methods. LT20
handles time-, radiation-, energy-, and fuel-optimal problems in a MATLAB-native environment, and
it implements simple dynamics models, such as the two-body model with J2 perturbation in carte-
sian coordinates and Modified Equinoctial Elements (MEE) and the restricted three- and four- body
models. The tool implements sophisticated hybrid techniques for low thrust trajectory optimization,
such as continuation methods, smoothing techniques, analytical derivatives and accurate switching
detection system that allows to conduct end-to-end optimizations for transfers with up to 500 revolu-
tions. DIRETTO [2] is a MATLAB software for optimization of low thrust trajectories using direct
transcription method to solve the optimal control problem: the state and control variables are dis-
cretized and the optimal control problem is converted to a nonlinear programming problem (NLP).
In particular, three different collocation methods are implemented, thus embedding different ways
the state and control variables are satisfied and how the dynamics constraints are fulfilled: these are
Hermite-Simpson, Gauss-Lobatto and Pseudospectral methods. DIRETTO offers considerable flex-
ibility to accommodate both satellite and operational system constraints. It can be used with high
fidelity models to derive solutions for short and medium duration transfer phases. For example, it has
been successfully used in solving low-thrust Earth-Mars transfers with ballistic capture [2], where the
optimization involves both the heliocentric transfer and ballistic capture point targeting. The Milani
Mission Analysis Pipeline [4] is a tool written in MATLAB for trajectory design and mission analysis
around small celestial bodies, such as asteroids. The tool is highly automated and can perform tra-
jectory design using waypoints strategy and landing design, as well as analyses such as orbital event
computation, knowledge analysis, dispersion analysis and contingency analysis.

3.1.2 Navigation

The navigation module gathers a set of University of Bologna proprietary tools that aid the orbit
determination and the flight path control processes. The orbit determination allows the estimation of
a spacecraft trajectory given a set of observables and a dynamical model. If the estimated trajectory
differs from the reference one, flight path control process optimizes and computes orbital maneuvers
to correct these differences.

3.2 Interface layer

The Interface layer is the connection between the Mission Analysis layer, where trajectory and navi-
gation optimizations are performed and the Flight Dynamics layer, where the outputs of the Mission
Analysis layer are used to perform main flight dynamics computations. The outputs of the tools used
in the Mission Analysis layer are provided in different formats depending on the tool used. In order
to use them as inputs to the Flight Dynamics layer, it is necessary to convert them in a set of stan-
dardize interface files, which can be used within GODOT and SPICE modules or used to exchange
information with external partners. The use of standardized files is also useful in order to avoid pro-
liferation of implementation-dependant and customized output, as the standards defined in CubeNav
will be taken as reference for any trajectory optimization tool developed in the future. As a result, the

ESA GNC-ICATT 2023 – Julia Muylle 6

software will be modular and it will be possible to plug-and-play new software or to interface other
third-party tools. The codes to perform this conversion are written in MATLAB for the conversion
of outputs from the guidance module and Python for the conversion of outputs from the navigation
module. For the conversion of outputs from the trajectory optimizer, these are first saved into two
MATLAB structures, which have the same configuration for all different optimization tools. The
first structure contains the data of trajectory, namely the spacecraft name and ID, the time span, the
spacecraft state (position and velocity vectors) and mass at all time epochs and the control vector in
magnitude and direction, while the second one contains the settings, in particular the reference frame
name and center. The data and settings structures are then used to create spk binary kernels, con-
taining the spacecraft ephemeris. The same two structures can also be used to create an OEM orbit
file with the metadata containing the spacecraft characteristics and the data section with the trajectory
epochs and ephemeris, and a timeline file containing the trend for thrust ignition: in particular, the
initial and final epoch for each thrust ignition are reported. Alternatively, the interface layer for the
navigation module exploits JSON files to exchange the desired outputs. This general exchange format
supports all the outputs of the navigation layer that mainly are conformed by residuals and time series.
The routines to perform the data exchange are generated with a series of Python scripts.

3.3 Flight Dynamics layer

The Flight Dynamics layer represents the set of codes that provide all the relevant outputs necessary
for generating and displaying the processing results. In particular, the layer can be subdivided in
five main modules, designed to facilitate real-time insights on the navigation results and on critical
parameters that affect operations. The modules implemented are: astrodynamical events, trajectory
representation and comparison, navigation residuals, timeline for relevant events visualization, and
automation.

3.3.1 Event tool

The Event tool collects all the codes necessary to compute different astrodynamical events, given a
reference trajectory and a reference time span. The events considered are seven and are referred to
different celestial bodies or stations. The first tool is the eclipse generation tool, which generates
the list of eclipses with respect to one or more defined celestial bodies during the trajectory. The
tool is able to distinguish between total, partial and annular eclipses: for each of them the initial and
final epoch of the eclipse are provided as output. A similar tool is the bodies occultation tool, which
identifies the time epochs where a celestial body is occulted by one or more other defined bodies with
respect to the reference trajectory. The third tool is the altitude tool, which computes the altitude of the
spacecraft with respect to the surface of a reference body and compares it with a user-selected value.
The outputs are therefore the time instants when the spacecraft is at a given altitude with respect to the
reference body. Similarly, the range tool computes the distance between the spacecraft and the center
of a reference body and identifies the local maxima and minima, therefore the time instant when the
range rate is null. The elevation tool computes the elevation with respect to a defined ground station
and reports the instants when the elevation crosses the minimum value for the spacecraft to be visible
from the ground station. The conjunction tool computes the phase angle with respect to one or more
reference bodies to identify possible conjunctions windows, when the phase angle is below a user-
defined minimum. Finally, the illumination tool computes the illumination factor defined by a selected
source body and an occulting body. The event tool is identified by the epoch when the illumination
factor is null, which correspond to total eclipse. The graphical representation of the events can be
of two main types. The first is represented in Figure 3, where an example is provided for the case
of the JUICE spacecraft eclipses with respect to Jupiter and Ganymede. The different colors and

ESA GNC-ICATT 2023 – Julia Muylle 7

height of the columns identify the different eclipses types. The plot has similar configuration also for
occultations, where only one type of occultation is contemplated.

03-04-2032 07-04-2032 11-04-2032 15-04-2032 19-04-2032
Date

Annular

No eclipse

Partial

Total

Ec
lip

se
s

Jupiter

03-04-2032 07-04-2032 11-04-2032 15-04-2032 19-04-2032
Date

Annular

No eclipse

Partial

Total

Ec
lip

se
s

Ganymede

Eclipses - JUICE

Figure 3: Graphical representation of the eclipses events of JUICE trajectory test case with respect to Jupiter
and Ganymede.

A second kind of graphical representation is the one reported in Figure 4, where the altitude with
respect to Jupiter and Europa is represented for JUICE trajectory. In this case the altitude is computed
for every epoch in the time span and the intersection with the fixed input values represented by red
lines is evaluated. Similar plots are also identified for the elevation, range and conjunction events,
while the illumination fraction and range events plots only represent the values of the phenomenon
under consideration, without the fixed value lines.

03-06-2032 09-06-2032 15-06-2032 21-06-2032 27-06-2032
Date

0

1

2

3

Al
tit
ud

e
[k
m
]

1e6 Europa

03-06-2032 09-06-2032 15-06-2032 21-06-2032 27-06-2032
Date

0

1

2

3

Al
tit
ud

e
[k
m
]

1e6 Jupiter

Altitude - JUICE

Figure 4: Graphical representation of the fixed altitude events of JUICE trajectory test case with respect to
Jupiter and Ganymede.

ESA GNC-ICATT 2023 – Julia Muylle 8

3.3.2 Trajectory

The Trajectory tool contains the tools necessary to handle the reconstructed and predicted spacecraft
state. In particular, the tool embeds the graphical representation of the trajectory and the trajectory
comparison tool. The first is the tool to generate the plot of the trajectory, given a certain orbit file.
This can be represented in a user-defined reference frame and both in keplerian and cartesian param-
eters. The trajectory comparison tool instead requires two orbit files, representing the trajectories
to compare. The comparison is made as an absolute difference between the parameters of the two
trajectories. In particular, if cartesian coordinates are selected as orbital parameters, the norm of the
difference in position and velocity is shown, while if keplerian parameters are selected, the difference
for each keplerian parameter is represented. An example of a portion of JUICE trajectory in local
frame with respect to Jupiter is reported in Figure 5 in cartesian and keplerian coordinates, while in
Figure 6, the comparison between two different JUICE orbit file is represented.

X [km]

1e6
−3 −2 −1 0 1 2 3

Y [
km
]

1e
6

−3
−2

−1
0
1
2
3

Z
[k
m
]

0
5000
10000
15000
20000
25000

Trajector in Jupiter-centered local frame
trajectory
Jupiter

(a) Cartesian coordinates

2
3

a
[k
m
]

1e6

0.50

0.75

e
[-]

25.6

25.7
i [
de

g]

−3

−2

OM
 [d

eg
]

02-0
6-20

32

04-0
6-20

32

06-0
6-20

32

08-0
6-20

32

10-0
6-20

32

Date

−100
0

100

om
 [d

eg
]

02-0
6-20

32

04-0
6-20

32

06-0
6-20

32

08-0
6-20

32

10-0
6-20

32

Date

0

100

th
 [d

eg
]

Keplerian Parameter wrt Jupiter

(b) Keplerian elements

Figure 5: Trajectory representation in Cartesian and Keplerian coordinates. A portion of JUICE trajectory in
the local reference frame is used as an example.

Date
0

2

4

6

Di
ffe

re
nc

e
in
 p
os

iti
on

 [k
m
]

02-06-2032 06-06-2032 10-06-2032
Date

0

10000

20000

30000

Di
ffe

re
nc

e
in
 v
el
oc

ity
 [k

m
/s
]

Difference in Jupiter-centered local frame

(a) Cartesian parameters

−1
0
1

a1
-a

2
[k

m
]

1e6

−0.25

0.00

e1
-e

2
[-]

−0.1

0.0

i1
-i2

 [d
eg

]

0.0

0.5

OM
1-

OM
2

[d
eg

]

02-0
6-20

32

06-0
6-20

32

10-0
6-20

32

Date

−250
0

250

om
1-

om
2

[d
eg

]

02-0
6-20

32

06-0
6-20

32

10-0
6-20

32

Date

−10

0

10

th
1-

th
2

[d
eg

]

Keple ian Pa amete Diffe ence w t Jupite

(b) Keplerian parameters

Figure 6: Trajectory comparison in Cartesian and Keplerian coordinates. A portion of JUICE trajectory from
two different orbit file is used as an example.

ESA GNC-ICATT 2023 – Julia Muylle 9

3.3.3 Timeline

Timeline is a tool that provides an interactive graphical representation of a chronological sequence
of events selected by the user. Timeline supports the user in planning and controlling the flight
activities, in particular those related to navigation. For example, events that can be represented by the
timeline are tracking passes, orbital maneuvers, Data Cut-Offs (DCOs), flight dynamics operations
shift, occultations, scientific events. At the current state of works, the events set can be provided by
the user using JSON formatted files or they are automatically retrieved from the Event tool described
in Section 3.3.1. In addition, a dedicated function has been implemented to plot the actual tracking
passes of Deep Space Network (DSN) through a query of the Service Preparation Subsystem (SPS7)
web interface. The Timeline graphical representation in Figure 7, foresees a grid where each row
is a set of events of same origin (i.e., orbital maneuvers) while the columns identify the timestep of
the timeline. Also, an interactive time ruler is drawn on top of the grid showing the date and time.
Furthermore, by clicking the middle mouse button on the grid, a time cursor is drawn with the aim of
accurately showing the time in a selected location of the timeline. The grid covers the time interval
configured by the user on a dedicated control panel where the timestep can also be chosen. Timeline
rows are added by the user on a panel on the left side of the grid, while the events set to be drawn
on the row is selected via a drop-down list. The events are drawn as rectangles that can be selected
and clicked by the user with the aim of displaying the details of the events or calling up an associated
function of the Event tool (i.e., plot the elevation of a spacecraft during a tracking pass).

Figure 7: Graphical representation of the events schedule provided by the Timeline tool using LICIACube data
(coverage from Goldstone, Canberra, and Madrid on rows 1 to 3, actual tracking passes on row 4, and several
mission events on row 5).

3.3.4 Residuals

The residuals tool allows to perform a quick validation of the estimated trajectory, by providing a
graphical representation of the retrieved residuals as represented in Figure 8. Pre-computed residuals
with the Navigation layer tools can be directly loaded into the GUI using JSON formatted files.
Alternatively, the tool allows to perform a quick pass-through using real radio-tracking measurements,
namely range and range-rate observables. The pass-through is performed by using the GODOTPy
library that retrieves the computed observables given a trajectory provided by the user. The user
can select and edit the displayed residuals when necessary, for example in case of outliers. The

7https://spsweb.fltops.jpl.nasa.gov/rest/Wrapper/Schedule/schedview.html

ESA GNC-ICATT 2023 – Julia Muylle 10

https://spsweb.fltops.jpl.nasa.gov/rest/Wrapper/Schedule/schedview.html

editing activity can be then exported as a JSON file containing the removed residuals. The interface
allows the user to zoom on data as well as have a representation of the data coverage by complex or
station. Thanks to the modular architecture of the software, Residual tool works in symbiosis with
the Timeline tool, synchronizing the time cursor of the timeline represented as a vertical line on the
residual viewer.

Figure 8: LICIACube residual data visualization using the residual viewer tool (the vertical gray line identifies
the time cursor of the Timeline tool).

3.3.5 Automation

During the different mission phases, many analyses and checks are performed which largely involve
repetitive tasks, starting from the analysis and processing of the radiometric data, the optimization
of the spacecraft trajectory, and the subsequent Verification and Validation (V&V) of flight dynamics
products and generation of official interfaces. This means that the generation of the products requires
the execution of a predefined sequence of (complex) algorithms and tools, processing of results and
extraction of relevant figures that are then compared against thresholds and bounds extracted by mis-
sion requirements and operative constraints.
The architecture of CubeNav is therefore designed having in mind the possibility to largely automate
the use of such tools and routines for use during operations. The first key element is the presence
of a single shared environment file where all the information concerning ephemerides, spacecraft
characteristics, and GODOT setup are defined. The location of the file is defined within the the
CubeNav configuration module, which accesses a predefined location or retrieves the environment
file from a dedicated environment variable. This ensures that all tools will run with the same basic
configuration, which is fundamental to guarantee a full compatibility among the results obtained with
different tools.
The second key element to enable automation is the use of text input files in YAML or JSON format.
This allows the possibility to use scripting languages (e.g., bash or Python) to manipulate such files
according to mission-phase dependent parameters. For instance, the current date and time span needed
for events generation can be directly substituted depending on the current date and time. Additionally,

ESA GNC-ICATT 2023 – Julia Muylle 11

the blocks structures are shared among different files (e.g., those defining the orbit file path or state
vectors). The generation of input files can therefore be simplified and generalized, manipulating and
assembling block templates through a scripting language. The same standardization applies to the
output files. This enables common modules for parsing such files and, by exploiting GODOTPy event
intervals computations, allows to easily define and assemble checks and tests as Python modules and
programs. As an example, by combining the optimization outputs and visibility from ground stations,
it is possible to check that manoeuvres are executed during passes.
Another important aspect that enables automation is the possibility to split and monitor the execution
of all steps. CubeNav is designed in such way that generic and mission-specific computations are
well defined and separated in programs and scripts, each providing its own output in a clear folder
structure. By implementing a job scheduler it will be therefore possible to run tasks in a predefined
sequence, prioritize critical tasks, handle dependencies, and running independent pipelines in parallel
whenever possible. This rather flexible implementation has allows to recover the execution in case an
intermediate step fails. Lastly, the key feature that will be added to the automation layer is a dashboard
to summarize the execution status and outcome of the V&V checks.

3.4 CubeNav Graphical User Interface

The Graphical User Interface (GUI) is the direct interface available to the user. It has a twofold
purpose: through this window the necessary inputs are provided by the user, as well as the desired
outputs and the results are shown once all the computations have been performed. In Figure 9, a
picture of the GUI is shown in its initial configuration and an example of input selection is reported.

(a) Initial GUI layout (b) GUI layout with inputs definition

Figure 9: GUI layout. On the left the initial user interface, on the right the interface after environment loading
and input definition by the user.

The File menu provides an interface to load the environment and save the results. As it can be
noticed, the selection of celestial bodies or stations for events computation is done through a list,
which is filled up once the environment file is loaded. The environment file contains the universe
and the kernels necessary for the spacecraft trajectory under evaluation. The first tab Input collects
the common inputs necessary to define the portion of the trajectory under investigation: this includes
the spacecraft orbit file and name and the time span to be considered in the analysis, which includes
initial and final epochs, time grid and time scale considered. Moreover, the definition of the desired
outputs is also placed in the same window. In particular, two separated boxes are present for events
computation and trajectory representation. In the event computation table, the configuration of each

ESA GNC-ICATT 2023 – Julia Muylle 12

event has a different setting, based on the inputs necessary, especially if fixed values of the quantity
under investigation are needed. For all the events, the possibility of selecting different bodies and
of specifying different fixed values for each body is included. The second box is the one related
to trajectory representation and trajectory comparison. Here the inputs requires are the reference
celestial body, the reference frame (local or inertial) and the desired orbital parameters (Keplerian
or Cartesian). In the orbit comparison tab the second orbit file to be compared to the reference
one is also required. When the common fields and the fields relative to at least one event or orbit
representation type are correctly filled in, the Run button activates. The Run button embeds three
possible options: the computation of the events, the computation and plot of the events and the plots
of trajectory/trajectory comparison. When the input fields are all correctly filled in, the input files
necessary for computations are created as JSON files. The Run button, then, starts the events or
trajectory computations, which are performed all at once. Once the computations completed, other
tabs are activated, depending on the run process selected. The results of the events computation are
stored as JSON files in the result folder initially selected. The graphical representations are instead
grouped in the Plot events and Plot trajectories tab, as represented in Figure 10. If more than one
event was selected, the list of events is reported in the tab and the one to be visualized can be selected.

(a) Results for event (b) Results for trajectory

Figure 10: GUI results layout.

4 ONGOING DEVELOPMENTS AND FUTURE WORK

The CubeNav software is still currently under development and testing. The project is a 18 months
agreement, supposed to be concluded by January 2024. The current stage of development features
a completed implementation of flight dynamics procedures. In particular, layer 2 is only composed
of proprietary software, already developed by the two research teams and has been fully connected
to the CubeNav project through the interface layer. Layer 4 has instead been fully implemented
within CubeNav in the past months. This layer is currently under testing: unit tests have already
been performed to validate event functions and configuration file, while regression tests are currently
under development to validate all portions of codes implemented. The GUI implementation is still
not concluded: two versions of it are currently present, one for navigation computations and one
for guidance events computations, but they still need to be merged in a single user interface from
which all computations can be performed. Once the final GUI is assembled, functional tests will be
performed to assess its correct functioning.

ESA GNC-ICATT 2023 – Julia Muylle 13

5 CONCLUSION

This paper provides a description of the CubeNav software architecture and characteristics. The tool
is organized in a modular fashion, by grouping together in different layers and modules segments of
code with similar functionalities. This represents CubeNav strength in terms of adaptability of the
software to different optimization tools such that it can be used in combination with other third-party
software and for future automation of the operations tasks. Indeed, the CubeNav architecture embeds
an interface layer which is able to convert outputs from different optimization tools to suitable inputs
for flight dynamics computations. The tool represents an integrated flight dynamics software, which
enables to obtain all mission details relevant to the navigation operations, thus raising the level of
automation of flight dynamics operations. The segment of codes providing the necessary outputs for
operations are all managed by a practical Graphical User Interface, which allows the user to easily
define the necessary input parameters and select the desired outputs. The GUI also provides the
interface where the results are shown to the user in text and graphical formats. Overall, the way
of presenting and storing these outputs is beneficial both for the interaction with the operators and
for allowing the generation of a schedule of automated activities and tasks for operation purposes.
CubeNav is therefore an effective integrated tool, efficiently exploiting the knowledge and tools of
two research groups and intended as a key tool for automation of flight dynamics operations for
interplanetary CubeSats and consequent reduction of operations costs and errors.

6 ACKNOWLEDGEMENT

The work described in this paper was carried out as part of the ASI project F35F22000490005 for the
development of the CubeNav software: operative navigation for deep-space CubeSat missions. The
authors would like to acknowledge the support received by the Italian Space Agency (ASI).

REFERENCES

[1] A. Cipriano, D. Dei Tos, and F. Topputo, “Orbit Design for LUMIO: The Lunar Metoroid Im-
pacts Observer,” Frontiers in Astronomy and Space Sciences, vol. 5, p. 29, 2018.

[2] F. Topputo, D. Dei Tos, K. Mani, et al., “Trajectory design in high-fidelity models,” in 7th
International Conference on Astrodynamics Tools and Techniques (ICATT), 2018, pp. 1–9.

[3] T. Villela, C. Costa, A. Brandao, F. Bueno, and R. Leonardi, “Towards the Thousandth CubeSat:
A statistical Overview,” International Journal of Aerospace Engineering, 2019.

[4] F. Ferrari, V. Franzese, M. Pugliatti, C. Giordano, and F. Topputo, “Preliminary mission profile
of Hera’s Milani CubeSat,” Advances in Space Research, vol. 67, pp. 2010–2029, 6 2020.

[5] E. Dotto, V. Della Corte, M. Amoroso, et al., “LICIACube-the Light Italian Cubesat for Imag-
ing of Asteroids in support of the NASA DART mission towards asteroid (65803) Didymos,”
Planetary and Space Science, vol. 199, p. 105 185, 2021.

[6] G. Leccese, A. Fedele, and S. Natalucci, “Overview and Roadmap of Italian Space Agency Ac-
tivities in the Micro- and Nano-Satellite Domain,” in 73rd International Astronautical Congress
(IAC), 2022.

[7] M. Lombardo, M. Zannoni, I. Gai, et al., “Design and Analysis of the Cis-Lunar Navigation for
the ArgoMoon CubeSat Mission,” Aerospace, vol. 9, no. 11, p. 659, 2022.

ESA GNC-ICATT 2023 – Julia Muylle 14

	Introduction
	The CubeNav project
	External dependencies

	CubeNav architecture
	Mission Analysis layer
	Guidance
	Navigation

	Interface layer
	Flight Dynamics layer
	Event tool
	Trajectory
	Timeline
	Residuals
	Automation

	CubeNav Graphical User Interface

	Ongoing developments and future work
	Conclusion
	Acknowledgement

