5 research outputs found

    Local conditions and policy design determine whether ecological compensation can achieve No Net Loss goals.

    Get PDF
    Funder: Science for Nature and People Partnership Australian Research Council Discovery Early Career Research Award (DE170100684) Australian Research Council Future Fellowship (FT140100516) The Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub Agence Française de Développement Fonds Français pour l'environnement Mondial Mava FoundationFunder: Science for Nature and People Partnership Australian Research Council Future Fellowship FT140100516 National Environmental Science Program's Threatened Species Recovery HubMany nations use ecological compensation policies to address negative impacts of development projects and achieve No Net Loss (NNL) of biodiversity and ecosystem services. Yet, failures are widely reported. We use spatial simulation models to quantify potential net impacts of alternative compensation policies on biodiversity (indicated by native vegetation) and two ecosystem services (carbon storage, sediment retention) across four case studies (in Australia, Brazil, Indonesia, Mozambique). No policy achieves NNL of biodiversity in any case study. Two factors limit their potential success: the land available for compensation (existing vegetation to protect or cleared land to restore), and expected counterfactual biodiversity losses (unregulated vegetation clearing). Compensation also fails to slow regional biodiversity declines because policies regulate only a subset of sectors, and expanding policy scope requires more land than is available for compensation activities. Avoidance of impacts remains essential in achieving NNL goals, particularly once opportunities for compensation are exhausted

    Global demand for natural resources eliminated more than 100,000 Bornean orangutans

    Get PDF
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales , our knowledge about the effects of these changes on wildlife is much more sparse. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline . Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline . Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability

    Larger gains from improved management over sparing–sharing for tropical forests

    Get PDF
    Tropical forests are globally significant for both biodiversity conservation and the production of economically valuable wood products. Two contrasting approaches have been suggested to simultaneously produce timber and conserve biodiversity; one partitions forests to deliver these objectives separately (sparing), the other integrates both objectives in the same location (sharing). To date, the ‘sparing or sharing’ debate has focused on agricultural landscapes, with scant attention paid to forest management. Here we explored the sparing-to-sharing continuum through spatial optimisations with set economic returns for the forests of East Kalimantan, Indonesia – a global biodiversity hotspot. We found that neither sparing nor sharing extremes are optimal, although the greatest conservation value was attained towards the sparing end of the continuum. Critically, improved management strategies, such as reduced-impact logging, accounted for larger conservation gains than altering the balance between sparing and sharing, particularly for endangered species. Ultimately, debating sparing versus sharing has limited value while large gains remain from improving forest management

    Global demand for natural resources eliminated more than 100,000 Bornean orangutans

    Get PDF
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales, our knowledge about the effects of these changes on wildlife is much more sparse. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability
    corecore