26 research outputs found

    Ecological and evolutionary processes at expanding range margins

    Get PDF
    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change

    A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes

    Get PDF
    1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales

    Climate adaptation for rural water and sanitation systems in the Solomon Islands: A community scale systems model for decision support

    Get PDF
    Delivering water and sanitation services are challenging in data poor rural settings in developing countries. In this paper we develop a Bayesian Belief Network model that supports decision making to increase the availability of safe drinking water in five flood-prone rural communities in the Solomon Islands. We collected quantitative household survey data and qualitative cultural and environmental knowledge through community focus group discussions. We combined these data to develop our model, which simulates the state of eight water sources and ten sanitation types and how they are affected by season and extreme events. We identify how climate and current practices can threaten the availability of drinking water for remote communities. Modelling of climate and intervention scenarios indicate that water security could be best enhanced through increased rainwater harvesting (assuming proper installation and maintenance). These findings highlight how a systems model can identify links between and improve understanding of water and sanitation, community behaviour, and the impacts of extreme events. The resultant BBN provides a tool for decision support to enhance opportunities for climate resilient water and sanitation service provision

    No experimental evidence for host and related oviposition in a parasitic butterfly

    No full text
    The ability of adult butterflies of the genus Maculinea to locate their host ants prior to oviposition has been the subject of much discussion. We studied the egg laying behavior of the dusky large blue Maculinea nausithous whose larvae parasitize colonies of the ant Myrmica rubra. Flowerheads of the initial food plant were sprinkled with soil from ant nests, which contain chemicals involved in the nest recognition behavior of ants. The experiment was conducted to determine whether ant-released chemicals may act as oviposition cues and whether intraspecific competition for suitable plants may force female butterflies to alternative decisions. Host plant choice was not influenced by the presence of nest-derived host-ant cues. Density dependent shifts to less suitable host plants could not be ascertained nor changes in egg laying behavior across the flight period. The observed egg distribution could be primarily explained by host plant characteristics and environmental variability among sites. The result confirms the theory that host ant dependent oviposition appears to be a disadvantageous strategy in the face of resource limitation within ant colonies and the immobility of caterpillars

    Singing the blues: from experimental biology to conservation application.

    No full text
    Chemical communication plays a major role in the organisation of ant societies, and is mimicked to near perfection by certain large blue (Maculinea) butterflies that parasitise Myrmica ant colonies. The recent discovery of differentiated acoustical communication between different castes of ants, and the fact that this too is mimicked by the butterflies, adds a new component of coevolutionary complexity to a fascinating multitrophic system of endangered species, and it could inspire new ways to engage the public in their conservation

    MACIS: Minimisation of and adaptation to climate change impacts on Biodiversity

    No full text
    The recently finished EU funded project MACIS reviewed observed and projected climate change impacts on biodiversity. It assessed mitigation and adaptation options. It also reviewed and developed methods to assess future impacts of climate change on biodiversity including the identification of policy options to prevent and minimise these impacts
    corecore