10,312 research outputs found
SCAN: Learning Hierarchical Compositional Visual Concepts
The seemingly infinite diversity of the natural world arises from a
relatively small set of coherent rules, such as the laws of physics or
chemistry. We conjecture that these rules give rise to regularities that can be
discovered through primarily unsupervised experiences and represented as
abstract concepts. If such representations are compositional and hierarchical,
they can be recombined into an exponentially large set of new concepts. This
paper describes SCAN (Symbol-Concept Association Network), a new framework for
learning such abstractions in the visual domain. SCAN learns concepts through
fast symbol association, grounding them in disentangled visual primitives that
are discovered in an unsupervised manner. Unlike state of the art multimodal
generative model baselines, our approach requires very few pairings between
symbols and images and makes no assumptions about the form of symbol
representations. Once trained, SCAN is capable of multimodal bi-directional
inference, generating a diverse set of image samples from symbolic descriptions
and vice versa. It also allows for traversal and manipulation of the implicit
hierarchy of visual concepts through symbolic instructions and learnt logical
recombination operations. Such manipulations enable SCAN to break away from its
training data distribution and imagine novel visual concepts through
symbolically instructed recombination of previously learnt concepts
Slab reformer
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant
The Formation of Broad Line Clouds in the Accretion Shocks of Active Galactic Nuclei
Recent work on the gas dynamics in the Galactic Center has improved our
understanding of the accretion processes in galactic nuclei, particularly with
regard to properties such as the specific angular momentum distribution,
density, and temperature of the inflowing plasma. This information can be
valuable in trying to determine the origin of the Broad Line Region (BLR) in
Active Galactic Nuclei (AGNs). In this paper, we explore various scenarios for
the cloud formation based on the underlying principle that the source of plasma
is ultimately that portion of the gas trapped by the central black hole from
the interstellar medium. Based on what we know about the Galactic Center, it is
likely that in highly dynamic environments such as this, the supply of matter
is due mostly to stellar winds from the central cluster. Winds accreting onto a
central black hole are subjected to several disturbances capable of producing
shocks, including a Bondi-Hoyle flow, stellar wind-wind collisions, and
turbulence. Shocked gas is initially compressed and heated out of thermal
equilibrium with the ambient radiation field; a cooling instability sets in as
the gas is cooled via inverse-Compton and bremsstrahlung processes. If the
cooling time is less than the dynamical flow time through the shock region, the
gas may clump to form the clouds responsible for broad line emission seen in
many AGN spectra. Clouds produced by this process display the correct range of
densities and velocity fields seen in broad emission lines. Very importantly,
the cloud distribution agrees with the results of reverberation studies, in
which it is seen that the central line peak responds slower to continuum
changes than the line wings.Comment: 22 pages, 5 figure
The Amazon River Basin as an Analog for the Pre-Ice Age Bell River Basin of North America
The pre-ice age Bell River basin of North America was comparable in size to the modern day Amazon basin of South America. In Miocene time, it drained most of Canada and one third of the North American continent before being defeated by tectonics, volcanism, and glaciation. Beginning about 2.5 million years ago, continental glaciers re-routed the paths of the tributaries in Canada, leaving behind only traces of this once massive river basin in headwater valleys in the Rocky Mountains and in a giant river delta in the Labrador Sea. The contemporary Amazon River basin provides an analog for estimating fluvial parameters of the ancient Bell River system. Both systems had headwaters in high mountains and canyons, then drained across flat, continental-scale basins, and emptied into the Atlantic Ocean through broad continental rift zones. Both have large deltas and long submarine turbidity channels. Comparing the Amazon\u27s delta, tributaries, stream gradients, and sediment loads to the remnants of the Bell River system could support a model for pre-ice age North American drainage. This could then augment studies of tectonic displacements in the western interior, for example, uplift of the Great Plains and Rocky Mountains, effects of Yellowstone volcanism, and faulting in the Great Basin
Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour
We analyze the environmental dependence of galaxy morphology and colour with
two-point clustering statistics, using data from the Galaxy Zoo, the largest
sample of visually classified morphologies yet compiled, extracted from the
Sloan Digital Sky Survey. We present two-point correlation functions of spiral
and early-type galaxies, and we quantify the correlation between morphology and
environment with marked correlation functions. These yield clear and precise
environmental trends across a wide range of scales, analogous to similar
measurements with galaxy colours, indicating that the Galaxy Zoo
classifications themselves are very precise. We measure morphology marked
correlation functions at fixed colour and find that they are relatively weak,
with the only residual correlation being that of red galaxies at small scales,
indicating a morphology gradient within haloes for red galaxies. At fixed
morphology, we find that the environmental dependence of colour remains strong,
and these correlations remain for fixed morphology \textit{and} luminosity. An
implication of this is that much of the morphology--density relation is due to
the relation between colour and density. Our results also have implications for
galaxy evolution: the morphological transformation of galaxies is usually
accompanied by a colour transformation, but not necessarily vice versa. A
spiral galaxy may move onto the red sequence of the colour-magnitude diagram
without quickly becoming an early-type. We analyze the significant population
of red spiral galaxies, and present evidence that they tend to be located in
moderately dense environments and are often satellite galaxies in the outskirts
of haloes. Finally, we combine our results to argue that central and satellite
galaxies tend to follow different evolutionary paths.Comment: 19 pages, 18 figures. Accepted for publication in MNRA
AEGIS-X: The Chandra Deep Survey of the Extended Groth Strip
We present the AEGIS-X survey, a series of deep Chandra ACIS-I observations
of the Extended Groth Strip. The survey comprises pointings at 8 separate
positions, each with nominal exposure 200ks, covering a total area of
approximately 0.67 deg2 in a strip of length 2 degrees. We describe in detail
an updated version of our data reduction and point source detection algorithms
used to analyze these data. A total of 1325 band-merged sources have been found
to a Poisson probability limit of 4e-6, with limiting fluxes of 5.3e-17
erg/cm2/s in the soft (0.5-2 keV) band and 3.8e-16 erg/cm2/s in the hard (2-10
keV) band. We present simulations verifying the validity of our source
detection procedure and showing a very small, <1.5%, contamination rate from
spurious sources. Optical/NIR counterparts have been identified from the DEEP2,
CFHTLS, and Spitzer/IRAC surveys of the same region. Using a likelihood ratio
method, we find optical counterparts for 76% of our sources, complete to
R(AB)=24.1, and, of the 66% of the sources that have IRAC coverage, 94% have a
counterpart to a limit of 0.9 microJy at 3.6 microns (m(AB)=23.8). After
accounting for (small) positional offsets in the 8 Chandra fields, the
astrometric accuracy of the Chandra positions is found to be 0.8 arcsec RMS,
however this number depends both on the off-axis angle and the number of
detected counts for a given source. All the data products described in this
paper are made available via a public website.Comment: 17 pages, 9 figures. Accepted for publication in ApJS. Data products
are available at http://astro.imperial.ac.uk/research/aegis
Simulations of Direct Collisions of Gas Clouds with the Central Black Hole
We perform numerical simulations of clouds in the Galactic Centre (GC)
engulfing the nuclear super-massive black hole and show that this mechanism
leads to the formation of gaseous accretion discs with properties that are
similar to the expected gaseous progenitor discs that fragmented into the
observed stellar disc in the GC. As soon as the cloud hits the black hole, gas
with opposite angular momentum relative to the black hole collides downstream.
This process leads to redistribution of angular momentum and dissipation of
kinetic energy, resulting in a compact gaseous accretion disc. A parameter
study using thirteen high resolution simulations of homogeneous clouds falling
onto the black hole and engulfing it in parts demonstrates that this mechanism
is able to produce gaseous accretion discs that could potentially be the
progenitor of the observed stellar disc in the GC. A comparison of simulations
with different equations of state (adiabatic, isothermal and full cooling)
demonstrates the importance of including a detailed thermodynamical
description. However the simple isothermal approach already yields good results
on the radial mass transfer and accretion rates, as well as disc eccentricities
and sizes. We find that the cloud impact parameter strongly influences the
accretion rate whereas the impact velocity has a small affect on the accretion
rate.Comment: 21 pages, 18 figures, Accepted for publication in MNRA
Single-grain and multi-grain OSL dating of river terrace sediments in the Tabernas Basin, SE Spain
River terraces represent important records of landscape response to e.g. base-level change and tectonic movement. Both these driving forces are important in the southern Iberian Peninsula. In this study, Optically Stimulated Luminescence (OSL) dating was used to date two principal river terraces in the Tabernas Basin, SE Spain. A total of 23 samples was collected from the fluvial terraces for dating using quartz OSL. Sixteen of the samples could not be dated because of low saturation levels (e.g. typical 2xD0 < 50 Gy). The remaining seven samples (5 fossil and 2 modern analogues) were investigated using both multi-grain and single-grain analysis. Single grain results show that: (i) measurements from multi-grain aliquots overestimate ages by up to ∼ 4 ka for modern analogues and young samples (<5 ka), presumably because (ii) the presence of many saturated grains has biased the multi-grain results to older ages. Despite the unfavourable luminescence characteristics we are able to present the first numerical ages for two terrace aggradation stages in the Tabernas Basin, one at ∼16 ka and the other within the last 2 ka
Buckling Instabilities of a Confined Colloid Crystal Layer
A model predicting the structure of repulsive, spherically symmetric,
monodisperse particles confined between two walls is presented. We study the
buckling transition of a single flat layer as the double layer state develops.
Experimental realizations of this model are suspensions of stabilized colloidal
particles squeezed between glass plates. By expanding the thermodynamic
potential about a flat state of confined colloidal particles, we derive
a free energy as a functional of in-plane and out-of-plane displacements. The
wavevectors of these first buckling instabilities correspond to three different
ordered structures. Landau theory predicts that the symmetry of these phases
allows for second order phase transitions. This possibility exists even in the
presence of gravity or plate asymmetry. These transitions lead to critical
behavior and phases with the symmetry of the three-state and four-state Potts
models, the X-Y model with 6-fold anisotropy, and the Heisenberg model with
cubic interactions. Experimental detection of these structures is discussed.Comment: 24 pages, 8 figures on request. EF508
- …