39 research outputs found

    A new portable monitor for measuring odorous compounds in oral, exhaled and nasal air

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The B/B Checker<sup>®</sup>, a new portable device for detecting odorous compounds in oral, exhaled, and nasal air, is now available. As a single unit, this device is capable of detecting several kinds of gases mixed with volatile sulfur compounds (VSC) in addition to other odorous gasses. The purpose of the present study was to evaluate the effectiveness of the B/B Checker<sup>® </sup>for detecting the malodor level of oral, exhaled, and nasal air.</p> <p>Methods</p> <p>A total of 30 healthy, non-smoking volunteers (16 males and 14 females) participated in this study. The malodor levels in oral, exhaled, and nasal air were measured using the B/B Checker<sup>® </sup>and by organoleptic test (OT) scores. The VSCs in each air were also measured by gas chromatography (GC). Associations among B/B Checker<sup>® </sup>measurements, OT scores and VSC levels were analyzed using Spearman correlation coefficients. In order to determine the appropriate B/B Checker<sup>® </sup>level for screening subjects with malodor, sensitivity and specificity were calculated using OT scores as an identifier for diagnosing oral malodor.</p> <p>Results</p> <p>In oral and nasal air, the total VSC levels measured by GC significantly correlated to that measured by the B/B Checker<sup>®</sup>. Significant correlation was observed between the results of OT scores and the B/B Checker<sup>® </sup>measurements in oral (r = 0.892, p < 0.001), exhaled (r = 0.748, p < 0.001) and nasal air (r = 0.534, p < 0.001). The correlation between the OT scores and VSC levels was significant only for oral air (r = 0.790, p < 0.001) and nasal air (r = 0.431, p = 0.002); not for exhaled air (r = 0.310, p = 0.096). When the screening level of the B/B Checker<sup>® </sup>was set to 50.0 for oral air, the sensitivity and specificity were 1.00 and 0.90, respectively. On the other hand, the screening level of the B/B Checker<sup>® </sup>was set to 60.0 for exhaled air, the sensitivity and specificity were 0.82 and 1.00, respectively.</p> <p>Conclusion</p> <p>The B/B Checker<sup>® </sup>is useful for objective evaluation of malodor in oral, exhaled and nasal air and for screening subjects with halitosis.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01139073">NCT01139073</a></p

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    A new record of sesarmid crab, Labuanium trapezoideum (H. Milne Edwards, 1837) from Okinawa–jima Island, Ryukyu Islands.

    No full text
    A sesarmid crab, Labuanium trapezoideum (H. Milne Edwards, 1837) is newly recorded based on a female specimen collected from Okinawa-jima Island, Ryukyu Islands, southwestern Japan. The specimen was found from a freshwater stream at distances of about 1,000 m and 500 m from the river mouth and the upper limit of the estuarine basin, respectively

    宇宙科学ミッションに適用可能な小型高精度新方式磁力計 ~MMX及びComet Interceptor搭載に向けた開発状況~

    No full text

    Initial Flow of Tissue Conditioners : Gelation Characteristics, and Influence of Powder/Liquid Ratio on Gelation

    Get PDF
    本論文の要旨は平成4年2月の第69回広島大学歯学会例会,および平成4年8月の第18回日本補綴歯科学会中国四国支部学術大会において発表した。本研究は一部文部省科学研究費(No.02557076,02670867,03454449,04771608)によった

    Static Viscoelastic Properties after Gelation of Tissue Conditioners : Evaluation for Purposes of Clinical Use

    Get PDF
    本論文は一部文部省科学研究費(№02557076,02670867,04771608)によった

    A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.

    Get PDF
    甘味タンパク質の高甘味度化に成功 -低カロリータンパク質性甘味料の更なる有効利用に期待-. 京都大学プレスリリース. 2016-02-04.Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100, 000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor
    corecore