151 research outputs found

    Propagation failure of traveling waves in a discrete bistable medium

    Full text link
    Propagation failure (pinning) of traveling waves is studied in a discrete scalar reaction-diffusion equation with a piecewise linear, bistable reaction function. The critical points of the pinning transition, and the wavefront profile at the onset of propagation are calculated exactly. The scaling of the wave speed near the transition, and the leading corrections to the front shape are also determined. We find that the speed vanishes logarithmically close to the critical point, thus the model belongs to a different universality class than the standard Nagumo model, defined with a smooth, polynomial reaction function.Comment: 8 pages, 6 eps figures, to appear in Physica

    Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    Full text link
    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.Comment: 4 pages, 4 figure

    Exponential synchronization of complex networks with Markovian jump and mixed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, we investigate the exponential synchronization problem for an array of N linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of m modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov–Krasovskii functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Rapid Phenotype-Driven Gene Sequencing with the NeoSeq Panel: A Diagnostic Tool for Critically Ill Newborns with Suspected Genetic Disease

    Get PDF
    New genomic sequencing techniques have shown considerable promise in the field of neonatology, increasing the diagnostic rate and reducing time to diagnosis. However, several obstacles have hindered the incorporation of this technology into routine clinical practice. We prospectively evaluated the diagnostic rate and diagnostic turnaround time achieved in newborns with suspected genetic diseases using a rapid phenotype-driven gene panel (NeoSeq) containing 1870 genes implicated in congenital malformations and neurological and metabolic disorders of early onset (<2 months of age). Of the 33 newborns recruited, a genomic diagnosis was established for 13 (39.4%) patients (median diagnostic turnaround time, 7.5 days), resulting in clinical management changes in 10 (76.9%) patients. An analysis of 12 previous prospective massive sequencing studies (whole genome (WGS), whole exome (WES), and clinical exome (CES) sequencing) in newborns admitted to neonatal intensive care units (NICUs) with suspected genetic disorders revealed a comparable median diagnostic rate (37.2%), but a higher median diagnostic turnaround time (22.3 days) than that obtained with NeoSeq. Our phenotype-driven gene panel, which is specific for genetic diseases in critically ill newborns is an affordable alternative to WGS and WES that offers comparable diagnostic efficacy, supporting its implementation as a first-tier genetic test in NICUs

    Universal Scaling of Wave Propagation Failure in Arrays of Coupled Nonlinear Cells

    Full text link
    We study the onset of the propagation failure of wave fronts in systems of coupled cells. We introduce a new method to analyze the scaling of the critical external field at which fronts cease to propagate, as a function of intercellular coupling. We find the universal scaling of the field throughout the range of couplings, and show that the field becomes exponentially small for large couplings. Our method is generic and applicable to a wide class of cellular dynamics in chemical, biological, and engineering systems. We confirm our results by direct numerical simulations.Comment: 4 pages, 3 figures, RevTe

    Optimización de un sistema ELAN® mediante técnicas de CFD

    No full text
    Oral Communicationinfo:eu-repo/semantics/nonPublishe

    Microscopic reaction diffusion patterns in nanometer size compartments

    No full text
    info:eu-repo/semantics/nonPublishe
    corecore